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Abstract—Magnetic Resonance Imaging (MRI) 

has some attractive advantages over other 

medical imaging techniques. Its widespread 

application as a medical diagnostic tool is 

however hindered by its long acquisition time as 

well as reconstruction artifacts. A proposed 

Compressive Sampling (CS) based method that 

addresses the two limitations of conventional 

MRI is presented in this paper. The proposed 

method involves acquisition of an under-sampled 

k-space by employing a smaller number of phase 

encoding gradient steps than that dictated by the 

Nyquist sampling rate. The MR image 

reconstructed from the under-sampled k-space is 

then randomly sampled and reconstructed using 

a greedy sparse recovery method in the wavelet 

domain. To improve the robustness of the 

method, a proposed high-pass filter is used to 

suppress the reconstruction artifacts. The Peak 

Signal to Noise Ratio (PSNR) as well as the 

Structural SIMilarity (SSIM) measures are used 

to assess the performance of the proposed 

method. Computer simulation results 

demonstrate that the proposed method reduces 

the reconstruction concomitant artifacts by 1.75 

dB for a given CS percentage measurement. For 

a given output image quality, the proposed 

method gives a scan time reduction of 20%. 

 

Index Terms— Compressive sampling, 

concomitant artifacts, acquisition time, magnetic 

resonance imaging. 

I. INTRODUCTION 

For a band-limited continuous-time signal to be 

recoverable from its samples, it should be sampled 

at a rate that is at least twice its highest frequency 

component. This signal acquisition paradigm is in 

accordance to the Shannon-Nyquist sampling 

theorem.  Applying the theorem to the acquisition of 

some high dimensional signals such as in Magnetic 

Resonance Imaging (MRI) leads to an excessively 

long acquisition time. However, if the signal is 

sparse or compressible in some suitable 

representation domain, the long acquisition time can 

be reduced by taking measurements that are highly 

incomplete according to the Shannon-Nyquist 

sampling theorem. The signal can then be 

reconstructed from the measurements using sparse 

reconstruction methods. This signal acquisition and 

recovery approach is referred to as Compressive 

Sampling (CS). The signal acquisition stage of CS 

combines the sensing and compression stages of 

traditional signal acquisition approaches into a 

single step. Application of the CS theory in the 

acquisition and reconstruction of signals is only 

successful if the signal plus the measurement 

procedure used meet some requirements. In addition 

to the signal being sparse or compressible in a 

suitable representation domain, the signal 

measurement and representation methods must be 

highly incoherent. The signal acquisition process 

can be modeled as a multiplication of the signal by a 

rank-deficient measurement matrix to produce a 

measurement vector. On the other hand, the sparse 

domain representation of the signal is equivalent to a 

multiplication of the signal by a square 

representation matrix. The product of the two 

matrices yields the CS sensing matrix. For the 

incoherence condition to be met, the maximum 

cross-correlation between the rows of the 

measurement matrix and the columns of the 

representation matrix must be as small as possible. 

This in turn ensures low coherence between the 
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individual columns of the sensing matrix. The 

number of measurements required to accurately 

reconstruct the sparse signal is directly proportional 

to the square of the coherence between the 

measurement and the representation matrices. The 

sensing matrix must also possess the Restricted 

Isometry Property (RIP). The RIP condition ensures 

that the Euclidean separations between signals of 

interest are preserved in the representation domain. 

This separations preservation ensures unique 

reconstruction of all the signals of interest from their 

CS measurement vectors [1][2][3][4]. Although 

some deterministic matrices satisfy the RIP 

requirement, they require a special design of the 

measurement matrix and also lead to a requirement 

of a measurement vector that is unacceptably large. 

These limitations of the deterministic sensing 

matrices are overcome by using random matrices 

whose entries are independent and identically 

distributed entries picked from a continuous sub-

Gaussian distribution. The methods used to 

reconstruct the sparse signal from its CS 

measurement vector include optimization, iterative 

and thresholding methods [4][5][6].  

Magnetic Resonance Imaging (MRI) is a medical 

diagnostic technique that has some outstanding 

merits compared to other clinical imaging 

modalities. The method is non-invasive since it does 

not require any surgical intervention in order to 

image the interior of a human body as opposed to 

methods such as intravascular ultrasound and 

catheter venography. The Radio Frequency (RF) 

excitation pulses employed in MRI are incapable of 

causing ionization in the body tissues as opposed to 

the x-rays utilized in Computed Tomography (CT). 

Therefore, MRI does not put the patient at the risk of 

developing cancer due to prolonged exposure. 

Magnetic Resonance (MR) images have better soft-

tissue contrast than CT images. In addition, MRI 

systems have parameters such as the gradient echo 

time (TE), the spin-lattice relaxation time constant 

(𝑇1) and the spin-spin relaxation time constant 

(𝑇2) that can be exploited to flexibly change the 

image contrast. Whereas CT imaging uses iodine-

based contrast agents, MRI uses gadolinium-based 

ones. The iodine-based contrast agents can trigger 

allergic reactions in some patients unlike the 

gadolinium-based ones. Despite the many 

advantages, MRI is characterized by long scan 

times. This is partially as a result of the large 

sequence repetition time (TR) required to allow the 

flipped spins to relax to their equilibrium state with  

relaxation time constant 𝑇1. Another factor 

contributing to the long scan time is the large 

number of phase encoding steps required to meet the 

Shannon-Nyquist sampling criterion. The long MR 

imaging time makes it difficult for many patients to 

remain motionless in the MRI equipment. In 

addition, MR images are usually degraded by 

equipment-related as well as patient-related artifacts. 

The artifacts are as a result of non-idealities in the 

MRI equipment and voluntary as well as involuntary 

motions of the patient’s body [7][8][9][10]. 

Magnetic resonance images are usually sparse or 

compressible in the Discrete Wavelet Transform 

(DWT) or the Discrete Fourier Transform (DFT) 

domains. The problem of long image acquisition 

time experienced in MRI can therefore be solved 

using CS methods [11][12][13].   

Vellagoundar and Reddy have proposed a CS-

based method for reconstructing MR images from 

their under-sampled k-space data [14]. The method 

generally produces images of good quality. 

However, when the measurement vector has a length 

of about one-eighth of the low-frequency region of 

the k-space, the reconstructed MR images reveal 

artifacts in the phase-encoding direction. These 

artifacts compromise the quality of the reconstructed 

images and can result in misleading diagnosis of a 

medical condition. The CS-MRI algorithm proposed 

in [15] exploits the image sparsity and the 

characteristic profile of the image coefficients in the 

wavelet transform domain. The images 

reconstructed using this method exhibit high quality. 

The method has one deficiency since it requires 

adjustments of several parameters in the raised 

cosine denoising function every time the image size 

changes. A fast recovery CS-MRI method that uses 

limited samples is proposed in [16]. The sensing 

approach used results in short reconstruction times 

since the solution to the CS recovery problem is 

obtained in a closed form. However, the reduction in 

acquisition time results in low image quality. For 

example, using 25% measurements, the average 

Structural Similarity (SSIM) quality index of the 

reconstructed images is 0.81. The CS-MRI 
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reconstruction algorithm reported in [17] gives 

recovered images that have good edges and few 

artifacts. This method appears to have high 

computational complexity due to use of the complex 

double-density dual-tree DWT. The method is 

therefore not suitable for real time imaging. 

In this paper, an algorithm for acquisition and 

reconstruction of MR images using CS techniques is 

proposed. The procedure involves selective k-space 

acquisition, random sampling, greedy CS 

reconstruction in the DWT domain and finally DFT 

domain denoising to suppresses the concomitant 

artifacts. The method is characterized by low scan 

time, high quality images and low computational 

complexity since it uses a simple modified high pass 

filter and does not require adjustment of parameters 

for images of different sizes. 
The remainder of this paper is arranged as 

follows. Section II gives a brief background theory 
on CS, MRI and image quality metrics. The 
proposed algorithm is presented in section III while 
section IV presents the MATLAB simulation 
experimental results. In section V, a conclusion and 
suggestions for further work are given.  

II. THEORETICAL BACKGROUND 

This section outlines the requisite theory that is 

applied in the paper. The section covers compressive 

sampling, magnetic resonance imaging and image 

quality metrics theories. 

A. Compressive sampling theory 

Using Compressive Sampling (CS) theory, the 

acquisition of a high-dimensional signal is done by 

taking measurements that are much fewer than the 

length of the signal. The full-length signal is then 

reconstructed from the measurements in a suitable 

representation domain. For the application of the CS 

theory to be successful, the signal must be sparse or 

at least compressible in the representation domain. 

The measurement as well as reconstruction 

approaches used should allow reconstruction of the 

signal from as few measurements as possible while 

at the same time maintaining uniqueness in 

reconstruction of all the signals of interest [1][2][4].  

 

 

1) Compressive sampling measurement 

In CS acquisition of a sparse signal  f  of length N, 
only  𝑀 measurements are taken. The measurements 
form a vector 𝒚 given by; 

𝒚 = 𝚽𝒇, (1) 
where 𝑀 ≪ 𝑁  and  𝜱  is an 𝑀 × 𝑁 measurement 
matrix [7]. The matrix 𝜱 is designed in such a way 
as to reduce the length of the measurement vector as 
much as possible. The matrix should also allow the 
reconstruction of a wide class of sparse signals from 
their measurement vectors. Since the matrix is rank-
deficient, an infinite number of signals yield the 
same measurement vector. The matrix should 
therefore be designed to allow distinct signals within 
a class of interest to be uniquely reconstructed from 
their measurement vectors [2]. The signal  f  is said 
to be S-sparse in the orthonormal sparsifying basis 
Ψ if there exists a vector x that has at most S non-
zero entries such that the signal can be expressed as; 

𝒇 = ∑ 𝒙𝒊𝛙𝐢 = 𝚿𝒙,

𝑁

𝑖=1

 (2) 

where S < N, 𝒙 ∈ ℝ𝑁 and 𝚿 is an 𝑁 × 𝑁 
representation matrix [3]. Substituting for f in (1) 
from (2) yields; 

𝒚 = 𝚽𝚿𝒙 = 𝑨𝒙 , (3) 

where A is an M × N sensing matrix [5][6][7]. The 
sensing matrix represents a dimensionality reduction 
since it maps an N-length vector into a smaller M-
length vector. This matrix should be capable of 
preserving the information in the signal so as to 
allow correct reconstruction of the original signal 
from the measurement vector. To achieve this, the 
matrix should posses both the Null Space Property 
(NSP) and the Restricted Isometry Property (RIP). 
The matrix should also obey the incoherence 
property in order to reduce the size of the 
measurement vector. The sensing matrix always 
satisfies the NSP if the length of measurement 
vector is greater or equal to twice the sparsity of the 
signal to be recovered. When the measurements are 
not contaminated with noise or quantization errors, 
the NSP is a necessary and sufficient property to 
guarantee exact recovery of compressively sampled 
S-sparse signals. For the CS matrix to guarantee 
correct signal recovery from noisy measurements, 
the matrix must satisfy the Restricted Isometry 
Property (RIP) [3][4][7].  
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A matrix A satisfies the Restricted Isometry 
Property (RIP) of order S if there exists a small 
number 𝛿𝑠∈(0, 1) such that;  

(1 − 𝛿𝑠)‖𝒙‖2
2 ≤ ‖𝑨𝒙‖2

2 ≤ (1 + 𝛿𝑠)‖𝒙‖2
2, (4) 

holds for all S-sparse vectors x where 𝛿𝑆 ≥ 0 is the 

isometric constant of order S of the matrix 

and ‖. ‖2
2 denotes square of the Euclidean length 

[3][15]. The RIP inequality holds for any matrix 

𝑨 = 𝚽𝚿 where 𝚿 is an arbitrary representation 

matrix and 𝚽 is a matrix that obeys the RIP [7].  
The lower bound for the number of 

measurements required to reconstruct an S-sparse 
signal is related to its sparsity S, length N, as well as 
the coherence between the measurement and 
representation matrices by:  

𝑀 ≥ 𝐶. μ2(𝚽, 𝚿). 𝑆. 𝑙𝑜𝑔𝑁, (5) 

where C is a positive constant and  μ(𝚽, 𝚿) is the 
coherence between the matrices 𝚽 and 𝚿 [2][7]. 
Both deterministic and random matrices that satisfy 
the RIP can be constructed. Deterministically 
constructed sensing matrices of size M×N that 
satisfy the RIP of order S, require M to be quite 
large leading to unacceptably large measurement 
vectors. A random matrix that consists of 
independent and identically distributed entries from 
a continuous distribution satisfies the RIP with high 
probability. The matrix entries are chosen according 
to any sub-Gaussian distribution such as Gaussian or 
Bernoulli distributions. These matrices achieve the 
optimum number of measurements when the 
distribution used has a zero mean and a finite 
variance [4][7]. 

2) The CS reconstruction techniques 

The goal of a CS reconstruction method is to 

obtain an estimate of the sparsest signal that satisfies 

equation (3) from a noisy CS measurement vector. 

The recovery algorithms exploit the nature of the 

sensing matrix in order to reduce the size of the 

measurement vector, ensure robustness to noise and 

also reduce the signal recovery time. The CS 

recovery methods can be broadly classified into 

various types such as optimization-based techniques, 

greedy methods, thresholding methods and Bayesian 

methods [4][6]. 

The optimization-based techniques involve a 

constrained or non-constrained minimization of an 

object function. These methods include the 𝑙0-

minimization, the 𝑙1-minimization, the quadratically 

constrained basis pursuit, the basis pursuit 

denoising, the Least Absolute Shrinkage and 

Selector Operator (LASSO) and the Dantzig selector 

methods. 

The solution to the 𝑙0-minimization problem 

represents the sparsest estimate of the signal 

vector 𝒙. The problem involves the minimization of 

the 𝑙0-norm of the signal vector subject to the 

measurement vector as the constraint function. It is 

represented as follows; 

min‖𝒙‖0subject to 𝒚 = 𝑨𝒙, (6) 

where ‖. ‖p represents the 𝑙𝑝-norm. This problem is 

non-convex making it very difficult to solve in finite 

time. It is also Non-deterministic Polynomial (NP) 

hard which makes it not useful for CS recovery. The 

tractable 𝑙1-minimization problem is a convex 

approximation of the 𝑙0-minimization problem. It is 

also referred to as the basis pursuit problem which 

can be expressed as follows; 

min‖𝒙‖1 subject to    𝒚 = 𝑨𝒙. (7) 

If a measurement error occurs, the measurement 

vector 𝒚 will not be exactly equal to 𝑨𝒙. By taking 

into account the measurement error, the 𝑙1-

minimization algorithm transforms into the 

quadratically constrained basis pursuit problem 

expressed as follows; 

min‖𝒙‖1 subject to ‖𝑨𝒙 − 𝒚‖2. (8) 

The quadratically constrained basis pursuit method 

can also be modified to yield the Least Absolute 

Shrinkage and Selector Operator (LASSO) 

algorithm. The LASSO problem takes the form; 

min ‖𝑨𝒙 − 𝒚‖2  subject to  ‖𝒙‖1 ≤ τ, (9) 

where τ is a parameter such that τ ≥ 0. The basis 

pursuit denoising algorithm involves minimization 

of a non-constrained object function expressed as; 

min( λ‖𝒙‖1+‖𝑨𝒙 − 𝒚‖2
2), (10) 

Where λ is a parameter such that λ ≥ 0. The Dantzig 

selector is another variation of the quadratically 

constrained basis pursuit method that can be 

expressed as; 

min‖𝒙‖1subject ‖𝑨𝑻(𝑨𝒙 − 𝒚)‖∞ ≤ τ. (11) 

Although the optimization-based techniques are 

generally slower than the greedy methods, they offer 

tight performance guarantees [1][3][4][7]. 
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The greedy CS recovery algorithms rely on 

iterative approximation of the signal coefficients and 

support. This is achieved either by iteratively 

identifying the support of the signal until a stopping 

convergence criterion is attained, or by obtaining an 

improved estimate of the sparse signal at every 

iteration. The sparse signal estimate improvement is 

achieved through accounting for the mismatch in the 

measured data. The methods have lower 

computational complexity than the optimization 

algorithms. The greedy methods that are commonly 

used in sparse signal recovery include the Matching 

Pursuit (MP) and its improvements. These 

improvements include the Orthogonal matching 

pursuit (OMP), Stagewise orthogonal matching 

pursuit (StOMP) and COmpressive Sampling 

Matching Pursuit (CoSaMP) algorithms [1][18]. The 

Matching Pursuit (MP) algorithm decomposes a 

signal into a linear expansion of elements that form 

a dictionary or sensing matrix A ∈ ℝM×N. At each 

successive iteration step of the algorithm, an 

element from the dictionary that best approximates 

the signal by reducing the residual is chosen. The 

algorithm can be described by the pseudo code 

given in table 1. The limitation of the MP algorithm 

is the lack of guarantees in terms of recovery error 

as well as the large number of iterations required. 

The computational complexity drawback is 

overcome by using the algorithm referred to as the 

Orthogonal Matching Pursuit (OMP) algorithm. The 

OMP method is a modification of the MP algorithm 

that bounds the maximum number of iterations 

performed. The bounding gives a better 

representation of the unexplained portion of the 

residual which is then subtracted from the current 

residual to form a new one. This process is iterated 

until a stopping condition is attained. Despite being 

fast as well as leading to exact sparse signal 

recovery, the guarantees associated with OMP are 

weaker than those achievable using optimization 

techniques. In spite of these drawbacks, the OMP 

algorithm is an efficient sparse signal recovery tool 

especially when the signal is highly sparse [19].The 

pseudo code of the OMP algorithm is as given in 

table 2. The reconstruction efficiency of the OMP 

algorithm is low when the signal is not highly 

sparse.  

 

TABLE 1.THE MATCHING PURSUIT ALGORITHM 

Input: 
Sensing matrix A, measurements 

y, error threshold∈. 

Initialization: 
Initial: signal estimate x0 = 0, 

residual r0 = y, count k = 0.  

While 

‖𝒓𝒌‖2 ≥∈, 

Update 𝑘; 

 𝑘 ← 𝑘 + 1. 

Form residual signal estimate; 

𝒃 ← 𝑨𝑇𝒓𝒌. 

Update largest magnitude 

coefficient; 

�̂�𝒌 = �̂�𝒌−𝟏 + 𝑇(1). 

Update residual; 

𝒓𝒌 ← 𝒚 − 𝑨�̂�𝒌. 

End while Stopping condition‖𝒓𝒌‖2 <∈. 

Output: Solution vector,   �̂� ← �̂�𝒌. 

 

The Stagewise Orthogonal Matching Pursuit 

(StOMP) method is an improvement of the OMP 

algorithm that is characterized by lower 

computational cost. The algorithm operates with a 

fixed number of stages during which it builds up a 

sequence of signal approximations by removing 

detected structures from a sequence of residuals 

[20]. The Compressive Sampling Matching Pursuit 

(CoSaMP) algorithm offers improvements to both 

the MP and OMP algorithms. The improvements 

are: reduction in computational complexity, stronger 

reconstruction guarantees as well as robustness to 

signal and measurement noise [4][18]. 

The IHT algorithm commences with an initial 

estimate of the target signal vector �̂�. Next, iterative 

hard thresholding is applied to obtain a sequence of 

better signal estimates using the following iteration: 

�̂�𝒌+𝟏 = 𝑇(�̂�𝒌 + 𝑨𝑻(𝑦 − 𝑨�̂�𝒌), 𝑆) (12) 

Where 𝑇 is a pruning function, 𝑨 is the CS sensing 

matrix and 𝑆 is the signal sparsity level. The 

sequence of iterations converges to a specific point 

vector �̂�. If the CS sensing matrix possesses the RIP, 

then the reconstructed sparse signal will satisfy an 

instance-optimality guarantee [3][21]. 
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TABLE 2.THE ORTHOGONAL MATCHING PURSUIT 

ALGORITHM 

Input: 
Sensing matrix A, measurements 

vector y and error threshold ∈. 

Output: A sparse coefficient vector  

Initialize: 

Set the: index set 𝛀𝟎 = Ø , 

residual r0 = y and the counter k 

= 1. 

Identify. 

Determine the column 𝑛𝑘 

of 𝑨 that is most strongly 

correlated with the residual; 

𝑛𝑘 ∈ argmax|〈𝒓𝒌−𝟏, 𝑎𝑛〉|.      

Form residual signal; 

𝒃 ← 𝑨𝑇𝒓𝒌. 

Update the signal support; 

𝛀𝐤 ←

𝛀𝐤−𝟏 ⋃ supp(𝑇(𝒃, 1)or𝛀𝐤 ←

𝛀𝐤−𝟏 ⋃{𝑛𝑘}. 

Estimate: 

Find the best coefficients for 

approximating the signal with the 

columns chosen so far; 

 𝒙𝒌argmin‖𝒚 − 𝑨𝜴𝒌
𝒙‖

2
, 

Iterate: 

Update measurement residual; 

𝒓𝒌  = 𝒚 − 𝑨𝜴𝒌
𝒙𝒌 .  

Increment the count;  

𝑘 ← 𝑘 + 1. 

Repeat (2)–(4) until stopping 

criterion holds.  

End while Stopping condition ‖𝒓𝒌‖2 <∈. 

Output: 

Return the solution vector, 𝒙 with 

entries 𝒙(𝒏) = 𝒙𝒌(𝒏) for  n ∈ Ωk 

and  𝒙(𝒏) = 0  otherwise.  

 

The Bayesian CS reconstruction methods assume 

that the sparse signal comes from a known 

probability distribution. A stochastic measurements 

vector y is used to recover the probability 

distribution of each nonzero element of vector x. 

The recovery is done based on assumption of 

sparsity promoting priors. The method based on 

Bayesian signal modeling approach does not have a 

well-defined reconstruction error guarantee [22].  

 

B. Magnetic resonance imaging 

Medical MRI is an imaging technique that utilizes 

the interaction between spinning hydrogen protons 

in the human body and an excitation RF signal. The 

interaction happens when the body is placed in a 

strong static magnetic field. The spinning protons 

precess about the longitudinal static magnetic field 

𝑩𝟎at the Larmor frequencyω0 given by; 

ω0 = γ𝑩𝟎, (13) 

where γ is the gyromagnetic ratio of the hydrogen 

protons whose value is given by γ 2𝜋⁄ = 42.57 

MHz/T [8]. The interaction between 𝑩𝟎 and the 

spins give rise to a net magnetization moment 𝑴  
that is related to 𝑩𝟎 by; 

𝑑𝑴

𝑑𝑡
= 𝑴 × γ𝑩𝟎. (14) 

This net magnetization points in the direction (z) of 

𝑩𝟎 and has a magnitude M0 when the value of its 

transverse component Mxy is zero. For an MR image 

to be formed, the net magnetization needs to be 

flipped away from its equilibrium (z-direction) 

orientation. The magnetization also needs to be an 

oscillating function of time in order to produce 

induction of a current in the MRI equipment 

receiver coil [23].  

Application of a transverse RF excitation signal 

pulse at the Larmor frequency induces a torque on 

the net magnetization causing it to flip away from its 

equilibrium axis. The tipping results in a non-zero 

transverse component 𝑴𝒙𝒚. The excitation RF pulse 

is applied together with a slice-select gradient field 

𝑮𝒛 in order to excite only the slice of the patient’s 

body whose MR image is required [1][8]. Once the 

excitation pulse is turned off, 𝑴𝒙𝒚 decays 

exponentially with a spin-spin relaxation time 

constant 𝑇2. At the same time, the longitudinal 

component of the net magnetization 𝑴𝒛 grows 

towards the equilibrium net magnetization 𝑴𝟎 with 

a spin-lattice relaxation time constant 𝑇1. The 

relaxation process is accompanied by the generation 

of a Free Induction Decay (FID) MRI signal that is 

detected by the receiver coils of the MRI equipment. 

In the x- and y-directions, a phase-encoding gradient 
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field 𝑮𝒚 and a frequency-encoding (read-out) 

gradient field 𝑮𝒚 respectively are applied before 

reading of the FID signal. The gradient fields add 

spatial information to the FID signal. The FID signal 

is a measure of 𝑴𝒙𝒚which is given by the solution of 

following Bloch equation. 
𝑑𝑴

𝑑𝑡
= 𝑴 × γ𝑩 −

𝑀𝑥

𝑇2
𝒂𝒙 −

𝑀𝑦

𝑇2
𝒂𝒚

−
(𝑀𝑧 − 𝑀0)

𝑇1
𝒂𝒛, 

(15) 

where 𝒂𝒙, 𝒂𝒚 and 𝒂𝒛 are the unit vectors in the 𝑥, 𝑦 

and 𝑧  directions respectively, 𝑴𝒙(𝑡)a and 𝑴𝒚(𝑡) 

constitute the transverse magnetization component, 

𝑩 is the effective magnetic field while 𝑴𝒛(𝑡) is the 

longitudinal component. The solution of the Bloch 

equation is; 

𝑴(𝒓, 𝑡) = 

𝑴𝟎(𝒓)𝑒−𝑡 𝑇2(𝒓)⁄ 𝑒−𝒋𝜔0𝑡𝑒−𝑗2𝜋[𝑘𝑥(𝑡)𝑥  +𝑘𝑦(𝑡)𝑦], 
(16) 

where 𝒓 = 𝑥𝒂𝒙 + 𝑦𝒂𝒚 + 𝑧𝒂𝒛 is the Cartesian 

position vector. The parameters 𝑘𝑥(𝑡) and 𝑘𝑦(𝑡) are 

the spatial frequency components given by; 

 𝑘𝑥(𝑡) =
𝛾

2𝜋
∫ 𝑮𝒙(𝜏)𝑑𝜏

𝒕

𝟎

 

and 

 𝑘𝑦(𝑡) =
𝛾

2𝜋
∫ 𝑮𝒚(𝜏)𝑑𝜏

𝒕

𝟎
 . 

(17) 

The receiver coil of the MRI equipment is designed 

to detect the transverse magnetization component 

contributions from all the precessing protons in the 

selected body slice. Therefore, the received FID 

signal 𝑠𝑟(𝑡) is proportional to the closed volume 

integral of the transverse magnetization as follows; 

𝑠𝑟(𝑡) = ∭ 𝑴(𝒓, 𝑡)𝑑𝑥𝑑𝑦𝑑𝑧 (18) 

Substituting for 𝑴(𝒓, 𝑡) from equation (16) in 

equation (18) and assuming that 𝑇2 ≫ 𝑡, the 

demodulated FID signal is given by; 

𝑠𝑟(𝑘𝑥, 𝑘𝑦)= 

∭ 𝑴𝟎(𝒓)𝑒−𝑗2𝜋[𝑘𝑥(𝑡)𝑥  +𝑘𝑦(𝑡)𝑦]𝑑𝑥𝑑𝑦𝑑𝑧, 
(19 ) 

Where 𝑠𝑟(kx, ky) = 𝑠𝑟(𝑡). When a thin zero-

centered body slice (𝛥𝑧) is selectively excited, the 

demodulated FID signal will then be given by; 

𝑠𝑟(𝑘𝑥, 𝑘𝑦)

= ∬ 𝑴𝒙𝒚𝑒−𝑗2𝜋[𝑘𝑥(𝑡)𝑥  +𝑘𝑦(𝑡)𝑦]𝑑𝑥𝑑𝑦, 
(20) 

where 𝑴𝒙𝒚 = ∫ 𝑴𝟎(𝒓)𝑑𝑧
𝛥𝑧 2⁄

−𝛥𝑧 2⁄
. The FID signal is 

therefore a two-dimensional Fourier transform of the 

transverse magnetization 𝑴𝒙𝒚 at the spatial 

frequency points ( 𝑘𝑥,  𝑘𝑦). In MRI, several FID 

signals are measured at different values of spatial 

frequencies. Each of these signals is sampled at the 

Nyquist rate in the spatial frequency domain at 

sampling periods of 𝛥𝑘𝑥
 and 𝛥𝑘𝑦

 to yield the 

sampled signal 𝒮(u, v) such that; 

𝒮(𝑢, 𝑣)  = 𝑠𝑟(𝑢𝛥𝑘𝑥
, 𝑣𝛥𝑘𝑦

)  , (21) 

where 𝑢 ∈ [(− (𝑁𝑟 2)⁄ + 1),  𝑁𝑟 2⁄ ], 𝑣 ∈
[(− (𝑁𝑝 2)⁄ + 1),  𝑁𝑝 2⁄ ],  𝑁𝑟 is the number of read-

out samples per acquisition and 𝑁𝑝 is the number of 

phase encoding gradient steps.The sampled signals 

constitute the k-space of the MR image. The image 

is then reconstructed from the k-space using either 

the two-dimensional projection method or the two-

dimensional Inverse Discrete Fourier transform (2D-

IDFT) method.  

The scan-time (𝑇𝑎) of conventional spin-echo 

MRI is related to the number of phase encoding 

steps(𝑁𝑝) by; 

𝑇𝑎 = (𝑇𝑅)(𝑁𝑝)(𝑁𝐸𝑋) , (22 ) 

Where 𝑇𝑅 is the pulse sequence repetition time and 

𝑁𝐸𝑋 is the number of excitations used in the image 

acquisition [1]. Therefore, if the parameters 𝑇𝑅 and 

𝑁𝐸𝑋 are fixed, then, the image acquisition time is 

directly proportional to the number of phase 

encoding steps. The number of phase encoding steps 

required to satisfy the Nyquist sampling criterion is 

given by; 

𝑁𝑝 ≈ 2(𝐹𝑜𝑉𝑦)( 𝑘𝑦𝑚𝑎𝑥), (23 ) 

where 𝐹𝑜𝑉𝑦 is the field of view of the image in the 

y- (phase encoding) direction while  𝑘𝑦𝑚𝑎𝑥 highest 

spatial frequency of the image in the y-direction. If 

the number of phase encoding steps used is lower 

than 2(𝐹𝑜𝑉𝑦)( 𝑘𝑦𝑚𝑎𝑥) aliasing artifacts are 

experienced in the reconstructed image. If the high 

frequency rows of 𝒮(u, v) are not fully captured 

during the image acquisition, truncation artifacts 
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will be present in the reconstructed MR image. 

These artifacts manifest themselves in the image as 

the Gibb’s ringing phenomenon [1][8][23][24][25]. 

C). Objective image quality measures 
Objective image metrics are used to compare the 

quality of a reconstructed image to that of its 

ground-truth version. The measures discussed in this 

section are the Mean Squared Error (MSE), the Peak 

Signal to Noise Ratio (PSNR) and the Structural 

SIMilarity (SSIM) index. 

The MSE of a reconstructed image 𝒈 whose size 

is 𝑃 × 𝑄  pixels is given by: 

𝑀𝑆𝐸 =
∑ ∑ [𝒇 − 𝐠]2𝑄

𝑦=1
𝑃
𝑥=1

𝑃𝑄𝐿2
, 

(24) 

where 𝒇 is the 𝑃 × 𝑄 pixels ground-truth image and 

𝐿 is the maximum pixel intensity of the ground-truth 

image. The PSNR of the reconstructed image is 

given by; 

𝑃𝑆𝑁𝑅 = 10log10 (
𝑃𝑄𝐿2

∑ ∑ [𝒇 − 𝐠]2𝑄
𝑦=1

𝑃
𝑥=1

), (25) 

Both the MSE and PSNR are simple to compute but 

they do not match well with the characteristics of the 

Human Visual System (HVS) [26]. 

The Structural SIMilarity (SSIM) index is a 

quantitative image quality metric that is based on 

comparison of the luminance 𝑙(𝒇, 𝒈), contrast 

𝑐(𝒇, 𝒈) and structure 𝑠(𝒇, 𝒈) factors of a 

reconstructed image with those of the ground-truth 

image. Unlike the MSE and PSNR measures, the 

SSIM index is consistent with the quality judgment 

of the HVS. The three components of the SSIM 

index are obtained from the means (𝜇), standard 

deviations (𝜎) as well as the cross-correlation (𝜎𝑓𝑔) 

between the images. The luminance comparison 

component is a function of the means of the images 

defined as: 

𝑙(𝒇, 𝒈) =
(2µ𝑓µ𝑔 + 𝐶1)

(µ𝑓
2 + µ𝑔

2 + 𝐶1)
, 

(26) 

where µ𝑓 and µ𝑔are the means of the images 𝒇 and 

𝒈 respectively. The constant 𝐶1 is assigned the value 

𝐶1 = [𝐾1𝐿]2 where 𝐾1 ≪ 1.The contrast component 

is given by; 

𝑐(𝒇, 𝒈) =
(2𝜎𝑓𝜎𝑔 + 𝐶2)

(𝜎𝑓
2 + 𝜎𝑔

2 + 𝐶2)
, (27) 

where 𝜎𝑓 and 𝜎𝑔 are the standard deviations of the 

images 𝒇 and 𝒈 respectively. The constant 𝐶2 is 

assigned the value 𝐶2 = [𝐾2𝐿]2 where 𝐾2 ≪ 1. The 

structural component is a function of the standard 

deviations as well as the correlation between the 

images. It is given by; 

𝑠(𝒇, 𝒈) =
(𝜎𝑓𝑔 + 𝐶3)

(𝜎𝑓𝜎𝑔 + 𝐶3)
, (28) 

Where 𝜎𝑓𝑔 is the cross-correlation between the two  

images. The value of constant 𝐶3 is 𝐶3 = [𝐾3𝐿]2 

where 𝐾3 ≪1. The SSIM index combines the three 

components as follows: 
𝑆𝑆𝐼𝑀(𝒇, 𝒈) =  

(𝑙(𝒇, 𝒈))
α

(𝑐(𝒇, 𝒈))
β

(𝑠(𝒇, 𝒈))
γ

, 
(29) 

where 𝛼, 𝛽 and 𝛾 are parameters whose values are 

greater than zero and can be adjusted to alter the 

relative contributions of the three components. 

Substituting for the three components in equation 

(29) yields; 

𝑆𝑆𝐼𝑀(𝒇, 𝒈) = (
(2µ𝑓µ𝑔 + 𝐶1)

(µ𝑓
2 + µ𝑔

2 + 𝐶1)
)

𝛼

× 

 

(
(2𝜎𝑓𝜎𝑔 + 𝐶2)

(𝜎𝑓
2 + 𝜎𝑔

2 + 𝐶2)
)

𝛽

(
(𝜎𝑓𝑔 + 𝐶3)

(𝜎𝑓𝜎𝑔 + 𝐶3)
)

𝛾

 

(30) 

Making the contributions of the three components to 

be equal (𝛼 = 𝛽 = 𝛾 = 1) and setting 𝐶3 to 

be 0.5𝐶2 simplifies the SSIM index expression to; 

𝑆𝑆𝐼𝑀(𝒇, 𝒈) = 

(2µ
𝑓
µ

𝑔
+ 𝐶1) (2𝜎𝑓𝑔 + 𝐶2)

(µ
𝑓
2 + µ

𝑔
2 + 𝐶1) (𝜎𝑓

2 + 𝜎𝑔
2 + 𝐶2)

. 
(31) 

The SSIM index and its components satisfy the 

symmetry, boundedness and unique maximum 

properties [1][7][26]. 

 

 

III. PROPOSED METHOD AND DENOISING  

In this section, a proposed brisk and robust CS-

based MRI method is presented. The algorithm 
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mainly consists of three stages namely: selective k-

space sub-Nyquist acquisition, greedy CS 

reconstruction and finally suppression of 

concomitant artifacts. The method takes a shorter 

acquisition time (𝑇𝑎) than conventional MRI since it 

uses only a fraction of the number of phase encoding 

gradient steps (𝑁𝑝) required to meet Nyquist 

sampling criterion.  

A. The Proposed Algorithm 

The entire proposed algorithm is illustrated in the 

block diagram given in fig. 1. The k-space under-

sampling step involves the use of a few phase 

encoding gradient steps (𝑁𝑝 < 2 (𝐹𝑜𝑣𝑦)( 𝑘𝑦𝑚𝑎𝑥) to 

selectively under-sample the k-space. The phase 

encoding steps used are chosen such that 

approximately half of the measurements are 

constituted by fully sampled rows at the center of 

the k-space. These rows contain the k-space 

coefficients that have significantly larger 

magnitudes than the coefficients in the outer k-space 

rows. The centered rows also correspond to low 

spatial frequencies. The remaining measurements 

are obtained by uniformly under-sampling the outer 

(high-frequency) k-space rows. The selective under-

sampling process can be viewed as an elementwise 

matrix product of the full k-space of the image and 

an under-sampling mask as follows; 

𝒮𝑢(𝑢, 𝑣) = 𝒮(𝑢, 𝑣). ℳ(𝑢, 𝑣), (32) 

where 𝒮(𝑢, 𝑣) is the full k-space of the image, 

𝒮𝑢(𝑢, 𝑣) is the under-sampled k-space and ℳ(𝑢, 𝑣) 

is the proposed under-sampling mask. The mask 

consist of all ones in the rows that  correspond to the 

rows of 𝒮(𝑢, 𝑣) that are to be included in 

𝒮𝑢(𝑢, 𝑣) and zeros in the remainder of its rows. For 

example, to selectively acquire 50% of the k-space 

of a 64 × 32 pixels image, only 32 out of the 64 

rows of the k-space are captured.  The central 16 

rows of ℳ(𝑢, 𝑣) plus another 16 equally spaced 

rows selected from the remaining 48 outer (high 

frequency) rows will be filled with ones. Eight of 

the 16 high-frequency rows will be chosen from 

either side of the 16 central rows. The remaining 32 

rows of ℳ(𝑢, 𝑣) are then filled with zeros. The 

element-by-element product of ℳ(𝑢, 𝑣) and 𝒮(𝑢, 𝑣) 

is equivalent to acquisition of an under-sampled 

version of the k-space using only half the number of 

phase encoding steps dictated by the Nyquist 

sampling theorem. The acquired incomplete k-space 

is then transformed into an MR image by first 

centre-shifting it followed by determination of its 

Inverse 2D-DFT (2D-IDFT). The centre-shifting 

operation involves swapping of the first and fourth 

as well as second and third quadrants of the k-space 

matrix. This re-arrangement allows reconstruction of 

the image using MATLAB. The resulting image will 

be corrupted by coherent aliasing as well as Gibb’s 

ringing artifacts [1][11]. This noisy image is 

reshaped into a vector prior to fully sampling using a 

random sub-Gaussian matrix 𝜱 to yield a noisy 

measurement vector 𝒚′  given by; 

𝒚′ = 𝜱𝒇′, (33) 

where 𝒇′ is the vectorized image. Next, the image is 

reconstructed from  𝒚′ in form of vector 𝒙  in the 

Haar DWT domain using the OMP greedy method 

in order to enforce the image sparsity. This step is 

followed by determination of the Inverse Discrete 

Wavelet Transform (IDWT) of vector 𝒙 to yield a 

second vectorized image signal 𝒇,, as follows; 

𝒇,, = 𝚿−𝟏𝒙, (34) 

where 𝚿−𝟏 is the inverse of the Haar wavelet 

transform matrix. The CS reconstruction of the 

image converts the coherent artifacts that are related 

k-space under-sampling and truncation into 

incoherent concomitant artifacts that are easily 

filtered [1].  The vectorized image 𝒇,, is then 

converted into its k-space data, 𝒮′(𝑢, 𝑣). This is 

achieved by first converting it into a matrix followed 

by determination of its centre-shifted 2D-DFT. In 

𝒮′(𝑢, 𝑣), the k-space rows that were not captured 

during the acquisition of 𝒮𝑢(𝑢, 𝑣) will have been 

compressively reconstructed together with some 

artifacts. The k-space 𝒮′(𝑢, 𝑣) is therefore a 

corrupted version of full k-space of the MR image. 

This corrupted k-space is vectorized in order to 

simplify the design of a filter that suppresses the 

reconstruction artifacts. The vectorized k-space is 

multiplied by a proposed filter function as follows; 

𝑆′′(𝑛) = 𝑆′(𝑛). ℎ(𝑛), (35) 

Where 𝑆′(𝑛) is the vectorized form of 𝒮′(𝑢, 𝑣), 

𝑆′′(𝑛) is its filtered version while ℎ(𝑛) is the filter 

function. The range of the index 𝑛 for a 𝑃 × 𝑄 

pixels MR image is 1 ≤ 𝑛 ≤ 𝑃𝑄. Final ly, 𝑆′′(𝑛) is 
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converted to the output image by first converting it 

into a matrix followed by inverse 2D-DFT 

determination. 

In order to generate MATLAB simulation test 

results, an MR image is first converted into its k-

space by obtaining its centre-shifted 2D-DFT. The 

k-space data is then processed according to the 

procedure illustrated in fig. 1. 

B. The proposed filter function 
The proposed artifacts suppression filter 

accentuates the high frequency k-space coefficients 
by a scaling correction factor 𝜌 > 1 without 
affecting the low frequency coefficients. The filter 
characteristic was suggested after observing that the 
CS reconstruction resulted in a reduction in the 
magnitudes of high frequency k-space coefficient 
with negligible effects on the low frequency ones.  

The filter function h(n)  is given by; 

ℎ(𝑛) = {
1  𝑓𝑜𝑟 𝑁1 ≤ 𝑛 ≤ 𝑁2

𝜌             elsewhere
 , (36) 

where 𝜌 is the correction factor while 𝑁1 and 𝑁2 are 
the indexes of the vectorized k-space that define the 
range of the fully sampled low frequency k-space 
coefficients.   

 

 

 

 

 

 

 

 
 

 

 

Figure 1. The proposed algorithm block diagram. 

 

IV. EXPERIMENTAL RESULTS 

For the purpose of demonstrating the 
effectiveness of the proposed algorithm, MATLAB 
simulation results of ten MR images were obtained. 

The MR images were first down-sized to 64 × 32 
pixels using bicubic interpolation in order to reduce 
the processing time. The resizing also enabled the 
use of a denoising filter that does not require many 
parameters adjustments. The images were obtained 
from various sources that include the Siemens 
Healthineers [27] and the MNI BITE [28] databases. 
Results of some specific images as well as statistical 
summaries of the reconstruction qualities for all the 
images are presented. In all the experiments, the 
value of the artifacts correction factors used was in 
the range of 1.0 ≤ 𝜌 ≤ 1.4. An artifacts correction 
factor of 𝜌 = 1.2  was found to consistently give 
reconstruction results of the highest quality. 

A. The proposed algorithm illustrations 
Figure 2 shows an illustration of the selective k-

space under-sampled acquisition and reconstruction 
of the denoised image stages of the proposed 
method.  At the top of column (a) is the ground-truth 
image which is a sagittal cross-section of a head MR 
image. Its full k-space is given below it in the same 
column. Part (b) presents an under-sampled image 
that is reconstructed from 50 % of the full k-space 
rows as shown in the same column below the image. 
The under-sampled image is corrupted by coherent 
aliasing as well as truncation artifacts. Column (c) 
shows the image reconstructed using the proposed 
methods plus its k-space. It is evident from column 
(c) that most of the coefficients missing in the k-
space given in part (b) have been compressively 
recovered. These results demonstrate that it is 
possible to approximately reconstruct the MR image 
from its under-sampled k-space. 

The results presented in fig. 3 demonstrate the 
effect of the artifacts suppression filter on the 
magnitude of the k-space coefficients. In all the 
plots, the zero spatial frequency coefficient is 
located at the centre and has a magnitude of 872.64. 
This coefficient has been scaled down by a factor of 
four to 218.16 in order to make it possible for the 
higher frequency coefficients located further from 
the centre to be seen more clearly. 

 
 

Centre-shifting and 
inverse 2D-DFT 

Under-sampled k-space 
acquisition 

Random sampling: 𝒚′ =
𝜱𝒇′ 

2D-DFT determination 
and vectorization 

 

IDWT and vector to 
matrix conversion 

 

 Artifacts suppression: 
𝑆′′(𝑛) = 𝑆′(𝑛). ℎ(𝑛) 

 

Vector to matrix, and 
2D-IDFT 

 

Greedy DWT domain 
reconstruction  

 

Output image 
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(a) (b) (c) 

Figure 2. Illustration of the proposed method. (a) Ground-

truth head MR image and its k-space. (b) Selectively under-

sampled image and its k-space. (c) Denoised output image 

and its k-space.  

Part (a) presents a plot of the magnitudes of the k-
space coefficients of a ground-truth head MR image 
versus the pixel index. The k-space has been 
vectorized in order to simplify the design of the 
artifacts suppression filter. The under-sampled 
version of the k-space of the image using 50% of the 
phase encoding steps is shown in part (b). In part 
(c), the vectorized k-space that has been 
compressively reconstructed from the under-
sampled version in part (b) is presented prior to 
denoising. It is evident that the coefficients missing 
in part (b) have been reconstructed in part (c). 
However, some of the reconstructed high-frequency 
coefficients have magnitudes that are much lower 
than their corresponding coefficients in part (a). Part 
(d) shows the reconstructed k-space of the image 
after denoising. The parameters of the denoising 
filter used: ρ = 1.2,   𝑁1 = 768 and 𝑁2 = 1280. 
Comparing parts (d) and (c), the filter has the effect 
of increasing the magnitudes of the high frequency 
k-space coefficients to be comparable to those of the 
ground-truth image without affecting the low 
frequency coefficients. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
Figure 3. Denoising effect on vectorized k-space.(a) 

Ground-truth k-space. (b) Under-sampled k-space. (c) The 

reconstructed k-space. (d) Denoised k-space. 
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B. Reconstruction quality comparison 
In fig.4, the reconstruction results for three MR 

images (spine, leg, and intestines) using three 
different methods at 40% measurements are shown. 
Column (a) presents the ground-truth images. The 
images reconstructed using the OMP and StOMP 
greedy algorithms are shown in columns (b)and (c) 
respectively. The images reconstructed using the 
proposed method are presented in column (d). These 
results show that, the proposed method gives higher 
quality of reconstruction compared to the other two 
methods.  

The reconstruction quality assessment results for 

three MR images (knee, spine hand) reconstructed 

using different CS-MRI methods are presented in 

table 3. The reconstructions were performed at 

different percentage measurements using the 

proposed method as well as the OMP and StOMP 

methods. The left-most column shows the three MR 

images while the next one lists the percentages of 

the k-space rows that were selectively acquired.  

    

    
    

    
    

    
(a) (b) (c) (d) 

Figure 4.Image reconstruction results. (a) Input ground-truth 

MR images. (b) Reconstruction using the OMP method. (c) 

Reconstruction using the StOMP method. (d) Reconstruction 

using the proposed method. 
 

 

 

TABLE 3. THE SSIM VALUES OF RECONSTRUCTED 
IMAGES 

MR Image %Measur

-ements 

OMP StOMP Proposed 

SSIM SSIM SSIM 

 

10 0.56 0.54 0.74 

20 0.77 0.75 0.85 

30 0.86 0.78 0.90 

40 0.90 0.82 0.94 

50 0.93 0.90 0.96 

60 0.95 0.93 0.98 

70 0.96 0.94 0.99 

 

10 0.63 0.62 0.76 

20 0.77 0.76 0.86 

30 0.83 0.80 0.94 

40 0.89 0.88 0.95 

50 0.93 0.90 0.96 

60 0.95 0.93 0.97 

70 0.97 0.95 0.98 

 

10 0.81 0.73 0.88 

20 0.91 0.89 0.93 

30 0.95 0.93 0.95 

40 0.96 0.96 0.97 

50 0.98 0.97 0.98 

60 0.98 0.98 0.98 

70 0.98 0.98 1.00 

 
The third, fourth and fifth columns show the SSIM 
values of the reconstructed images for the three 
different methods. The results show that the 
proposed method consistently reconstructs images of 
higher quality than both the OMP and StOMP 
methods. In terms of PSNR, the reconstruction 
quality results of three MR images reconstructed 
using three different CS methods at different 
percentage measurements are shown in table 4. The 
left-most column presents the input images. The 
images are: an intestines MR image, a leg 
angiogram and a kidney MR image. The third, 
fourth and fifth columns show the PSNR values of 
the images reconstructed using the three different 
methods. The results show that the proposed method 
yields images of higher PSNR values than the other 
two methods for all the percentage measurements 
used. 
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TABLE 4.  THE PSNR VALUES OF RECONSTRUCTED 
IMAGES 

MR Image % 

Measure

ments  

OMP StOMP Proposed 

PSNR 

(dB) 

PSNR 

(dB) 

PSNR 

(dB) 

 

10 13.07 14.13 17.24 

20 14.66 15.78 19.01 

30 16.54 16.43 21.43 

40 18.16 17.41 22.96 

50 19.07 18.35 24.48 

60 20.85 19.68 25.14 

70 22.97 20.94 27.05 

 

10 14.91 15.59 19.56 

20 16.07 16.68 20.60 

30 17.44 18.09 22.75 

40 18.70 18.80 24.05 

50 20.61 19.59 26.13 

60 21.95 20.36 27.78 

70 23.52 22.07 29.01 

 

10 15.31 16.58 18.38 

20 18.15 18.70 20.13  

30 18.63 19.55 22.37 

40 20.40 20.69 23.40 

50 21.63 21.12 24.88 

60 22.59 21.98 25.13 

70 24.43 23.07 26.45 

70 26.25 24.05 27.25 

C. Statistical summary 
A statistical mean of the quality for all the ten MR 

images reconstructed using the proposed method as 
well the OMP and StOMP methods is graphically 
presented in fig. 5. The mean PSNR values of the 
reconstructed images are plotted for different 
percentage measurements. The proposed method 
yielded higher quality images than the other two 
methods in terms of the PSNR measure. The quality 
improvement is at least 1.75 dB for 20% or more 
measurements. From the graphs, the OMP and 
StOMP methods would require at least 20% more 
measurements to reconstruct images of the same 
quality as those of the proposed method. For 
example, to reconstruct an image whose PSNR is 
21.4 dB, the OMP method requires 50% of the full 
k-space. On the other hand, the proposed method 
requires only 30% of the full k-space coefficients to 
reconstruct an image whose PSNR is 21.6 dB. This 
20% reduction in the percentage measurements 
required by the proposed method for a given 
reconstruction quality is equivalent to a 20% 
reduction in the phase encoding gradient steps (𝑁𝑝) 

required. From equation (22), a 20% reduction in 𝑁𝑝 

for a given image quality is equivalent to a 20% 
reduction in the MRI scan time. 

Almost similar results to the mean PSNR results 
presented in fig. 5 were obtained using the SSIM 
quality measure as shown in fig. 6. The figure 
presents a plot of the mean SSIM values of the 
reconstructed images at different percentage 
measurements for the OMP, StOMP and proposed 
methods. The mean SSIM values of the proposed 
method are consistently higher than for the other 
two methods. From the graphs, the OMP and 
StOMP methods would require about 20% more 
measurements to reconstruct images of the same 
quality as those of the proposed method. The images 
reconstructed using the StOMP method at 50% 
measurements have a mean SSIM index of 0.93. 
However, the proposed method requires only 30% 
measurements to reconstruct images whose mean 
SSIM index is 0.92 dB.  

 
Figure 5. Statistical mean of PSNR for different 

reconstruction methods. 

 
Figure 6. Statistical mean of SSIM for OMP, StOMP and 

proposed methods. 
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Figure 7 presents the variation of the variance of 
the PSNR measures of the images reconstructed 
using three different methods at different percentage 
measurements. On average, the proposed method 
yields lower variance values than both the OMP and 
StOMP methods. The lower values of variance 
confirm that the proposed method exhibits better 
consistency in reconstruction quality than the other 
two methods. 

The variation in performance of the proposed 
method with the correction factor (𝜌) of the 
proposed filter function is presented in fig. 8. These 
results show that a correction factor of 
approximately 1.2 yields optimum quality results in 
terms of the PSNR for all the measurements tested. 
Using the SSIM index, similar results were obtained 
and approximately the same optimum value of the 
correction factor was obtained. The quality of the 
reconstructed images was found to decrease 
monotonically as the value of the correction factor 
used deviates from the optimum value of 𝜌 = 1.2. 

 
Figure 7. Variation of the variance of PSNR for different 

reconstruction methods. 

 

 
Figure 8.  Performance variation of the proposed method 

with the correction factor. 

V. CONCLUSION 

A fast and robust method for reconstruction of 

MR images has been proposed in this paper. The 

method utilizes sparse reconstruction of sub-Nyquist 

sampled k-space data of the image in the DWT 

domain. An apodizing filter function has also been 

used to enhance the rubustness of the method. 

Computer simulation reconstruction results of the 

proposed method have been used to demonstrate a 

quality improvement of at least 1.75 dB and up to 

2.1 dB over the OMP method when using at least 

20% of the full k-space data. For a given desired 

reconstruction quality and while using at least 30% 

measurements, the proposed method requires 20% 

fewer measurements than both the OMP and StOMP 

methods. This reduction in the phase encoding steps 

requirement implies a 20% reduction in the image 

acquisition time. This research will be pursued 

further with an aim of further reducing both the 

artifacts in the reconstructed images and the scan-

time. To achieve the improvements, variable density 

under-sampling approaches as well as different 

artifacts filter functions will be tested.  
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