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Abstract— One of the most crucial steps in the design of 

modern Embedded Systems (ES) is the partitioning the system’s 

functionalities between the hardware (HW) blocks and the 

software (SW) blocks. The process of hardware software 

partitioning (HSP) is driven by several non functional 

requirements factors. Several works studied the influence of the 

execution time and the hardware area (cost) factors while dealing 

with the HSP problem; other works included also the power 

consumption factor. This article gives a study the HSP problem 

while considering several factors (ES metrics) and presents two 

approaches to solve the problem. The first approach has the 

objective of optimizing simultaneously a number of metrics while 

respecting a constraint on the global hardware area (cost metric), 

this approach is implemented using 0-1 Knapsack Problem (KP) 

algorithm; experimental results show that the algorithm is very 

fast and gives more reliable solutions comparing to well-known 

algorithms such as the Genetic Algorithm (GA) and the 

Simulated Annealing (SA) algorithm. The second approach aims 

to optimize the hardware cost while respecting given constraints 

on the other metrics; the proposed approach is based on Balas 

method. 

 
Index Terms—Embedded Systems, HW/SW Partitioning, 

Multi-objective, 0-1 Knapsack Problem, Genetic Algorithm, 

Simulated Annealing, Balas Method. 

 

I. INTRODUCTION 

mbedded Systems consist of a combination of hardware 

components and one or more microprocessors executing 

software functionalities. The increasing complexity in 

designing embedded systems involves using high-level system 

approaches in order to achieve the system functionality and 

the performance goals. The compound design (Co-Design) is 

one of the most used approaches to fulfill the latter 

requirements. The goal is to enable robust system designs and 

to improve the hardware and the software interactions. The co-

design is composed of four parts, co-specification to describe 

the system functionality at abstract level, co-synthesis to 

define the system architecture, co-simulation to 

simultaneously simulate the hardware and the software before 

prototyping, co-verification to verify mathematically that the 

system meets the requirements. The Hardware Software 

partitioning (HSP) process is the most important step in co-

 
 

synthesis part and in the whole co-design process. The HSP 

consists of splitting the system’s tasks into two parts, a 

hardware part and a software part, and choosing the best tasks 

to be included in each part based on some specific metrics and 

requirements. 

Most of previous works dealt with the HSP problem with 

two metrics, the performance (execution time) and the cost 

(hardware area). In fact, the hardware leads to faster speed 

with more expensive cost while the software leads to cheaper 

cost with lower speed. The objective is to find the best 

possible balance between the performance and the cost. Two 

families of algorithms were proposed. On the one hand, the 

family of exact solutions such as Integer Linear Programming 

[1], Branch and Bound algorithm [2], and Dynamic 

Programming [3], are very successful for an HSP problem of a 

system with a small number of tasks. However, when the 

number of tasks increases, exact solutions tend to be slow and 

become inefficient. On the other hand, the family of heuristic 

algorithms gives an approximation to the exact solution, and it 

is very useful for an HSP problem of a system with large size. 

The most used heuristic algorithms are Simulated Annealing 

(SA) algorithm [4], Genetic Algorithm (GA) [5], Tabu Search 

algorithm [6] and Greedy Algorithm [7, 8].  

Besides dealing with two metrics, other approaches were 

proposed to study the HSP problem with three metrics, 

execution time, hardware cost and power consumption 

metrics.  

In this article, we propose two novel approaches with the 

objective of optimizing several metrics of the system. The 

metrics which are taken into account are the execution time, 

the hardware area, the power consumption, the development 

time (related to IP reuse), the quality (degree of maturity of 

the IP), the bandwidth and the memory usage. The first 

approach aims to optimize simultaneously the involved 

metrics with the respect of a given constraint on the global 

hardware area, while the second approach has the objective of 

optimizing the hardware area with the respect of the 

constraints on the involved metrics. For the first proposed 

approach, a weight is associated to each metric and is 

proportional to the important of this latter; the approach is 

based on the computation of the benefit of the implementation 

of the task in hardware; the approach is implemented using   

0-1 Knapsack Problem algorithm; to validate its effectiveness, 
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we compare its results with the results obtained using Genetic 

Algorithm and Simulated Annealing algorithm. For the second 

approach, the total of each metric is calculated, and then, the 

Balas method is used to minimize the total hardware cost 

without exceeding the constraints on the other metrics. 

The remainder of this article is organized as follows. 

Section II reviews the related works. In section III, we present 

the first proposed approach. In section IV, we give details of 

the implementations of this approach. The second proposed 

approach is presented in section V. Section VI shows the 

results of simulations. Lastly the conclusions and future works 

are summarized in section VII. 

II. RELATED WORK 

The co-design as defined in [9] is the design of cooperating 

hardware components and software components in a single 

design effort. Choosing a good balance between hardware 

implementation and software implementation is driving by 

several factors. Several works studied the influence of the 

execution time and the hardware cost while dealing with the 

HSP problem, either by exact solutions or by heuristic 

approaches. 

The family of exact solutions includes algorithms, such as 

Integer Linear Programming (ILP), Branch and Bound 

algorithm (B&B), and Dynamic Programming (DP).ILP 

formulation consists of a set of variables, a set of linear 

inequalities, and a single linear function of the variables that 

serves as an objective function, in [1], the authors proposed to 

solve the HSP problem using ILP.B&B algorithm is based on 

binary tree, at each level, each variable can take the values 0 

or 1, the objective is to find the path from the top to the 

bottom of the tree which has the optimal cost under the given 

constraints; an example of its application to the problem is 

presented in [2].DP is a method, in which large problems are 

broken down into smaller problems, and through solving the 

individual smaller problems, the solution to the larger problem 

is discovered, an example of using DP in the HSP problem is 

presented in [3]. 

The family of heuristic algorithms contains, inter alia, 

Simulated Annealing (SA) algorithm, Genetic Algorithm 

(GA), Tabu Search (TS) algorithm, Greedy Algorithm (GR), 

Hill Climbing (HC) Algorithm and Particle Swarm 

Optimization (PSO). With the analogy of solid annealing, the 

Simulated Annealing algorithm is based on a heating phase 

and a controlled cooling phase. An initial temperature is 

chosen and a first random solution is generated. Then the 

temperature is reduced and a neighbor solution is generated 

iteratively until the end of the cooling phase. In [4] the 

proposed algorithm is based on a combination of Simulated 

Annealing and Greedy Algorithm. In [10], the author proposed 

an enhanced algorithm for Simulated Annealing. Genetic 

algorithm is based on the survival of the fitness principle, 

which tries to retain more genetic information from generation 

to generation. The algorithm generates an initial population 

and defines a fitness function. The evolution of a generation is 

based on selection, crossover and mutation steps. The 

algorithm iterates over those steps and evaluates each 

generation until certain condition is met and it returns the best 

individual of the latest generation as solution. In [5], the 

authors proposed and enhanced GA algorithm with an 

adaptive method for crossover and mutation steps. Other 

approaches were based on GA for solving the HSP problem, 

as in [11, 12]. Tabu Search algorithm picks an arbitrary point 

and evaluates an initial solution, then it computes the next set 

of solutions within neighborhood of current solution and picks 

the best solution from the set and iterates until the optima is 

reached. TS algorithm accepts non-improving solutions in 

order to escape from local optimum. In [6], the authors 

proposed two approaches, one is based on 0-1 Knapsack 

problem and the other is based on Tabu Search algorithm. 

Another implementation of the TS algorithm for the HSP 

problem was presented in [13]. Greedy Algorithm is based on 

making the locally optimal choice at each stage with the hope 

of finding the global optimum. In [7], the authors proposed 

three approaches based on Greedy Algorithm targeted for 

multi-processor system. In [8], the proposed algorithm is 

based on Greedy Algorithm and Simulated Annealing 

algorithm. Hill Climbing Algorithm consists of starting with a 

sub-optimal solution to a problem, and then repeatedly 

improves the solution until some condition is maximized; 

unlike the Greedy Algorithm, Hill Climbing Algorithm has the 

ability to avoid local minima; in [14], the authors proposed an 

algorithm based on HC for the HSP problem. Particle swarm 

optimization consists of a swarm of particles, where particle 

represent a potential solution (better condition). Particle will 

move through a multidimensional search space to find the best 

position in that space; an example of using PSO in hardware 

software partitioning is presented in [15].Other heuristic 

approaches were proposed to solve the HSP problem. In [16], 

the proposed approach is based on bat inspired algorithm. In 

[17] the authors proposed a methodology on Kernighan/Lin 

algorithm. In [18] the algorithm proposed is derived from the 

shortest path computing. 

The previous cited articles deal with the HSP problem with 

two metrics. Other approaches were proposed to study the 

HSP problem with three metrics, execution time, hardware 

cost and power consumption metrics. In fact, minimizing the 

power consumption is particularly crucial for mobile devices 

and for the cost of the cooling system. In [19], the proposed 

algorithm is a combination of Genetic Algorithm and Branch 

and Bound Algorithm to simultaneously optimize the three 

metrics. In [20], the authors propose two heuristic algorithms 

to optimize the power consumption under execution time and 

area constraints for multiprocessor systems. In [21], the 

proposed algorithm is based on 0-1 Knapsack Problem and 

Tabu Search algorithm to simultaneously optimize the power 

and the execution time while respecting the hardware area 

constraint. 

Table 1 summarizes and gives taxonomy of the cited 

algorithms. 
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TABLE I 
ALGORITHMS IN HW/SW PARTITIONING 

Ref. Based algorithm Optimized metrics 

Algo. Exact heuristic Exec 

time 

HW 

area 

Power 

1 ILP *  * *  

2 B&B *  * *  

3 DP *  * *  

4 SA  * * *  

5 GA  * * *  

6 TS  * * *  

7 GR  * * *  

14 HC  * * *  

15 PSO  * * *  

16 BAT 

Inspired 

 * * *  

17 Kernighan/ 

Lin 

 * * *  

18 Shortest path  * * *  

19 GA + B&B  * * * * 

20 Tree 

Partitioning 

 * * * * 

21 KP + TS  * * * * 

III. FIRST PROPOSED APPROACH 

The goal of the first proposed approach is to optimize 

several metrics under the total hardware area constraint. In this 

study, we consider the following metrics: the execution time, 

the power consumption, the development time, the quality, 

bandwidth and the memory usage. 

The system (ES) is composed of 𝑁blocks, denoted as        

𝐵 = {𝐵1, 𝐵2, 𝐵3 , … , 𝐵𝑛}. Each block 𝐵𝑖  can be implemented 

either on hardware or on software.𝐻 denotes the set of blocks 

to be assigned to hardware and𝑆denotes the set of blocks to be 

assigned to software.  

To each block𝐵𝑖considered implemented in hardware, 

weassign a profit𝑃𝑖  and a weight 𝑎𝑖, the weight is supposed 

tobe the area of the block in hardware, the profit is functionof 

the different other metrics: execution time, development time, 

power consumption, quality, bandwidth, memory usage. The 

profit of each block is calculated using the formula in the 

equation below: 

 

𝑃𝑖 =   𝜆1. (
𝑃𝑐𝑜𝑛𝑠

𝑖𝑠 − 𝑃𝑐𝑜𝑛𝑠
𝑖ℎ

𝑃𝑐𝑜𝑛𝑠
𝑖𝑠 ) +  𝜆2. (

𝑇𝑒𝑥𝑒𝑐
𝑖𝑠 − 𝑇𝑒𝑥𝑒𝑐

𝑖ℎ

𝑇𝑒𝑥𝑒𝑐
𝑖𝑠 ) +

  𝜆3. (
𝑇𝑑𝑒𝑣

𝑖𝑠 − 𝑇𝑑𝑒𝑣
𝑖ℎ

𝑇𝑑𝑒𝑣
𝑖𝑠 ) +  𝜆4. (

𝑄𝑖ℎ− 𝑄𝑖𝑠

𝑄𝑖𝑠 ) +   𝜆5. (
𝐵𝑑

𝑖ℎ− 𝐵𝑑
𝑖𝑠

𝐵𝑑
𝑖𝑠 ) +

  𝜆6. (
𝑀𝑒𝑚

𝑖𝑠 − 𝑀𝑒𝑚
𝑖ℎ

𝑀𝑒𝑚
𝑖𝑠 )    (1) 

 

 

 

 

For each block 𝐵𝑖:  

- 𝑃𝑐𝑜𝑛𝑠
𝑖ℎ  and 𝑃𝑐𝑜𝑛𝑠

𝑖𝑠  is respectively the power consumption 

in hardware and in software. 
 

- 𝑇𝑒𝑥𝑒𝑐
𝑖ℎ  and 𝑇𝑒𝑥𝑒𝑐

𝑖𝑠  is respectively the time execution in 

hardware and in software. 
 

- 𝑇𝑑𝑒𝑣
𝑖ℎ  and 𝑇𝑑𝑒𝑣

𝑖𝑠  is respectively the time of development 

in hardware and in software, which may involve the IP 

reuse aspect. 
 

- 𝑄𝑖ℎ and 𝑄𝑖𝑠 is respectively the quality of the block in 

hardware and in software. 
 

- 𝐵𝑑
𝑖ℎ and 𝐵𝑑

𝑖𝑠 is respectively the bandwidth in hardware 

and in software. 
 

- 𝑀𝑒𝑚
𝑖ℎ  and  𝑀𝑒𝑚

𝑖𝑠  is respectively the shared memory 

access in hardware and in software. 
 

- The coefficients 𝜆1,  𝜆2,  𝜆3,  𝜆4,  𝜆5, and  𝜆6 are 

positive integers used to give more or less importance 

to the associated criteria. 

 

The objective is to find a partitioning (𝐻, 𝑆) for 𝐵such that:  

     𝐻 ∩ 𝑆 =  ∅ 

and 𝐻 ∪ 𝑆 = 𝐵 

With the maximization of the whole profit of the blocks that 

are implemented in hardware, while respecting the global 

hardware area constraint𝐴: 

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒:  ∑ 𝑃𝑖 ∗ 𝑥𝑖

𝑛

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∑ 𝑎𝑖

𝑛

𝑖=1

∗ 𝑥𝑖  ≤ 𝐴 

                     (2) 

 

Where 𝑥𝑖 is the block’s implementation (HW=1, SW=0). 

IV. IMPLEMENTATION 

In this section we implement the proposed approach 

using three existent heuristic algorithms; the first algorithm 

is the 0-1 Knapsack Problem algorithm, the second 

algorithm is the Genetic Algorithm and the third algorithm 

is the Simulated Annealing algorithm. 

A. 0-1 Knapsack Problem algorithm 

The 0-1 Knapsack Problem is defined as follows:  

1- Given number of items, where each item has a weight 

and a profit (integer numbers).  

2- Given a knapsack with a maximum capacity (integer 

number).  

3- The problem consists of choosing the items for which 

the total profit is maximized and the total weight 

doesn’t exceed the knapsack’s capacity.  

The problem described in the previsions section is a           

0-1 Knapsack problem. The items are the blocks of the system 

and the knapsack’s capacity is the hardware area constraint. 
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The weight of each item (block) is the value of its hardware 

area, and its profit is calculated using (1).  

In the first step, the profit of each block is calculated. If the 

profit is negative, the block is the moved to the software set 

(𝑆), elsewhere, the block is candidateto a hardware 

implementation.  

𝑀 is the number of blocks candidates to hardware 

implementation. The pseudo-code ofthe 0-1 Knapsack 

algorithm is presented in Fig. 1.  

 
 

1) Input: The array that contains the weights (hardware 

area)of the blocks𝑊[1 … 𝑀] 
 

2) Input: The array that contains the profits of the 

blocks 𝑉[1 … 𝑀] 
 

3) Input: The capacity 𝐴 
 

4) Create a matrix 𝑇[0 … 𝑀; 0 … 𝐴] 
 

5) 𝑇 is initialized with 0s 
 

6) 𝑇 is then filled as follows:  
 

For𝑖 = 0 𝑡𝑜 𝑀, for𝑗 = 0 𝑡𝑜 𝐴 

a) If          𝑗 ≤ 𝑊[𝑖] ∶ 𝑇[𝑖, 𝑗] = 𝑇[𝑖 − 1, 𝑗] 

b) else: 

  𝑇[𝑖, 𝑗] = max (𝑇[𝑖 − 1, 𝑗], 𝑉[𝑖] + 𝑇[𝑖 − 1, 𝑗 − 𝑊[𝑖]) 
 

7) Output: return     𝑇[𝑀, 𝐴] 
 

Fig. 1. 0-1 Knapsack algorithm 

 

The principle of the algorithm is to fill a matrix 𝑇 in 

recursive way based on the weights and the profits of the 

items. 

The value of the last line and the last column of the 

constructed matrix (𝑇[𝑀, 𝐴]) gives the maximum possible 

profit. To find the selected items that make this maximum, an 

additional algorithm is necessary. This algorithm is described 

in Fig: 2.  

 

1) 𝑖 = 𝑀; 𝑘 = 𝐴 
 

2) 𝑤ℎ𝑖𝑙𝑒 𝑖 ≥ 1 𝑎𝑛𝑑 𝑘 ≥ 1 

a) 𝑖𝑓 𝑉[𝑖, 𝑘] ≠ 𝑉[𝑖 − 1, 𝑘]: 
 

i) mark the 𝑖𝑡ℎ block as selected 
 

ii) 𝑖 = 𝑖 − 1 
 

                  iii) 𝑘 = 𝑘 − 𝑊[𝑖] 

b) else: 

 𝑖 = 𝑖 − 1 
 

Fig. 2. 0-1 Knapsack algorithm: selected items 

 

At the end, the selected blocks using KP algorithm are 

moved to the hardware set, while the unselected blocks are 

moved to the software set. The two constructed sets compose 

the solution to the initial problem defined in the previous 

section. 

8) Example 

The system is composed of four blocks; the profits and the 

weight of each block are as follows: 

 
TABLE II 

KP PARAMETERS 

Block Profit Weight 

1 3 2 

2 4 3 

3 5 4 

4 6 5 

 

 The capacity (hardware area constraint) is 𝐴 = 5, and: 

𝑊 = [2, 3, 4, 5] 
𝑉 = [ 3, 4, 5, 6] 

 

Using the algorithm of Fig. 1, the constructed matrix 𝑇 is 

as follows: 

 
TABLE III 

CONSTRUCTED T MATRIX 

0 0 0 0 0 0 

0 0 3 3 3 3 

0 0 3 4 4 7 

0 0 3 4 5 7 

0 0 3 4 5 7 

 

 Using the algorithm of Fig. 2, the selected blocks are 1 

and 2, therefore, the partitioning solution is: 

𝑆 = {3, 4} 

𝐻 = {1, 2} 

B. Genetic Algorithm 

The steps of the Genetic Algorithm are summarized in     

Fig. 3: 

 

1) Initialize the parameters of the GA 

2) generation := 1 

3) Randomly generate an initial population of candidate 

solutions 

4) Evaluate the population by computing the fitness of each 

individual 

5) while (termination condition is not met) do: 

     a) Create a new population 

     b) for each individual: 

             i) Select a parent based on its fitness 

            ii) Apply the crossover on the individual with its 

                 parents to produce an offspring 

           iii) Accept the crossover based on the fitness of the 

                 offspring 

           iv) Apply the mutation on the offspring 

            v) Accept the mutation based on the fitness of the 

                 offspring 

           vi) Add the offspring to the new population 

      c) generation := generation + 1 

      d) Replace the old population by the new population 

      e) Evaluate the new population 

6) end loop; 

7) return the best individual 
Fig. 3. Genetic Algorithm 
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An initial population (candidate solutions) is randomly 

generated. Then, each individual of the population is 

evaluated, its fitness (cost) is the sum of its hardware blocks 

profits. The termination test determines whether the process 

will stop or goes to the next generation. The process stops 

when the cost of the best solution (individual) for each 

generation no longer changes for a certain number of 

generations. When the process continues, a new population 

(generation) will replace the old one.  

To generate a new population, three steps are applied on 

each individual. First step is the selection of the parent, in 

which the roulette wheel selection method is used; the 

individual with the highest fitness has more chance to be 

selected. Second, the process of crossover is applied to the 

individual with its parent to produce a new individual 

(offspring). If the offspring has less fitness or its hardware 

area is greater than the area constraint, then the crossover is 

rejected for this individual. The last step is the process of 

mutation, in this latter, the individual is randomly mutated 

(randomly selected blocks change the implementation between 

HW and SW) to generate a new offspring. Again, if the 

offspring has less fitness or its hardware area is greater than 

the area constraint, then the mutation is rejected for this 

individual. Then the algorithm iterates from the evaluation 

step. The process of elitism can also be applied in order to 

keep some few individuals with highest fitness from 

generation to generation. 

C. Simulated Annealing algorithm 

Simulated Annealing (SA) algorithm is based on the 

analogy between the solid annealing and the combinatorial 

optimization problem. The steps of the algorithm are 

summarized in Fig. 4: 

 

1) Construct initial configuration: 

𝑥𝑛𝑜𝑤 = (𝐻𝑊0, 𝑆𝑊0) 

2) Initialize Temperature: 

𝑇 =  𝑇𝑖/* 𝑇𝑖  :Initial Temperature */ 

3) 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑇𝑙 do:              /* 𝑇𝑙  : temperature length */ 

a) Generate randomly a neighboring solution: 

𝑥𝑛𝑒𝑥𝑡 ∈ 𝑁(𝑥𝑛𝑜𝑤) 

b) Compute change of cost function: 

∆𝐶 = 𝐶(𝑥𝑛𝑒𝑥𝑡) −  𝐶(𝑥𝑛𝑜𝑤)  
i) 𝑖𝑓 ∆𝐶 ≤ 0 𝑡ℎ𝑒𝑛:   

𝑥𝑛𝑜𝑤 =  𝑥𝑛𝑒𝑥𝑡 

ii) else : 

                     a) Generate q:=random(0,1) 

                     b)𝑖𝑓 𝑞 < 𝑒
−∆𝐶

𝑇 then: 

𝑥𝑛𝑜𝑤 =  𝑥𝑛𝑒𝑥𝑡 

                     c) Set new temperature: 

𝑇 =  𝛼 ∗ 𝑇 

                                    /* 𝛼 : cooling ratio */ 

4) if stopping criterion not met then: 

                Go to Step 3 

5) return solution corresponding to the minimum cost 

function 
Fig. 4. Simulated annealing algorithm 

 

First, the algorithm starts by choosing an initial 

temperature, and randomly creates an initial solution (a HW 

set and a SW set). Second, in the generation step, a neighbor 

solution is created by randomly moving a block of the current 

solution from one set to the other set. Third, the process of 

acceptation is applied; the acceptance is function of the energy 

of the current solution, the energy of the neighbor solution and 

the actual temperature. The energy of each solution is related 

to the profit defined in (1). Fourth, the temperature is reduced. 

Lastly, the algorithm iterates from the generation step until 

certain condition is met (the energy doesn’t change).  

V. SECOND PROPOSED APPROACH 

The objective of the second proposed approach is to 

optimize the total hardware area under the constraints on the 

other metrics. The considered metrics: the execution time, the 

power consumption and the memory usage. The system is 

represented in the form of a directed acyclic graph (DAG) as 

shown in the example of Fig. 5. 
 

 

 
 

Fig. 5. Example of DAG representation 

 

  Each block 𝐵𝑖  has the following values:  

 

- 𝑃𝑐𝑜𝑛𝑠
𝑖ℎ  and 𝑃𝑐𝑜𝑛𝑠

𝑖𝑠 : respectively the power consumption in 

hardware and in software. 
 

- 𝑇𝑒𝑥𝑒𝑐
𝑖ℎ  and 𝑇𝑒𝑥𝑒𝑐

𝑖𝑠 : respectively the time execution in 

hardware and in software. 
 

- 𝐶𝑖ℎ and 𝐶𝑖𝑠 : respectively the cost of the hardware area 

of the block in hardware and in software. 
 

- 𝑀𝑒𝑚
𝑖ℎ  and  𝑀𝑒𝑚

𝑖𝑠 : respectively the shared memory access 

in hardware and in software. 
 

- 𝑥𝑖  represents the block’s implementation (in HW = 1, 

in SW = 0) 

 

As used in [22], the total cost and the total power 

consumption are given by (3) and (4): 

 

𝐶 =  ∑ [(𝑥𝑖 ∗ 𝐶𝑖ℎ) + (1 − 𝑥𝑖) ∗ 𝐶𝑖𝑠]𝑛
𝑖=1             (3) 

 

𝑃 =  ∑ [(𝑥𝑖 ∗ 𝑃𝑐𝑜𝑛𝑠
𝑖ℎ ) + (1 − 𝑥𝑖) ∗ 𝑃𝑐𝑜𝑛𝑠

𝑖𝑠 ]𝑛
𝑖=1   (4) 
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Each block 𝐵𝑖  is supposed to be executed upon the 

reception of the corresponding data from its previous block 

𝐵𝑖+1; therefore, as adopted in [22], the total execution time is 

the sum of execution time of each block of the system: 

 

𝑇 =  ∑ [(𝑥𝑖 ∗ 𝑇𝑒𝑥𝑒𝑐
𝑖ℎ ) + (1 − 𝑥𝑖) ∗ 𝑇𝑒𝑥𝑒𝑐

𝑖𝑠 ]𝑛
𝑖=1               (5) 

 

We consider also that the total shared memory usage of the 

system is the sum of the shared memory usage of each block 

of the system: 

 

𝑀 =  ∑ [(𝑥𝑖 ∗ 𝑀𝑒𝑚
𝑖ℎ ) + (1 − 𝑥𝑖) ∗  𝑀𝑒𝑚

𝑖𝑠 ]𝑛
𝑖=1              (6) 

 

A. Problem formulation 

We consider the problem that consists of minimizing the 

cost of the hardware area with the respect of the constraints on 

the other metrics: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝐶 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

𝑃 ≤  𝑃𝑚𝑎𝑥  

𝑇 ≤  𝑇𝑚𝑎𝑥  

𝑀 ≤  𝑀𝑚𝑎𝑥  

                                   (7) 

   Let:      

𝐶𝑠 =  ∑ 𝐶𝑐𝑜𝑛𝑠
𝑖𝑠

𝑛

𝑖=1

 

   

𝑃𝑠 =  ∑ 𝑃𝑐𝑜𝑛𝑠
𝑖𝑠

𝑛

𝑖=1

 

𝑇𝑠 =  ∑ 𝑇𝑒𝑥𝑒𝑐
𝑖𝑠

𝑛

𝑖=1

 

𝑀𝑠 =  ∑ 𝑀𝑖𝑠

𝑛

𝑖=1

 

 

And for each block 𝐵𝑖: 

𝑐𝑖 =  𝐶𝑖ℎ −   𝐶𝑖𝑠 

𝑝𝑖 =  𝑃𝑐𝑜𝑛𝑠
𝑖ℎ −  𝑃𝑐𝑜𝑛𝑠

𝑖𝑠  

𝑡𝑖 =  𝑇𝑒𝑥𝑒𝑐
𝑖ℎ −  𝑇𝑒𝑥𝑒𝑐

𝑖𝑠  

        𝑚𝑖 =  𝑀𝑒𝑚
𝑖ℎ −   𝑀𝑒𝑚

𝑖𝑠  

 

As 𝐶𝑠
 is a constant value, the problem of (7) can be 

formulated as follows: 

 

 

 

 

 

 

 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ∑ 𝑐𝑖 ∗ 

𝑛

𝑖=1

𝑥𝑖 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

∑ 𝑝𝑖 ∗ 

𝑛

𝑖=1

𝑥𝑖  ≤  𝑃𝑚𝑎𝑥 − 𝑃𝑠 

∑ 𝑡𝑖 ∗ 

𝑛

𝑖=1

𝑥𝑖  ≤  𝑇𝑚𝑎𝑥 − 𝑇𝑠 

∑ 𝑚𝑖 ∗ 

𝑛

𝑖=1

𝑥𝑖  ≤  𝑀𝑚𝑎𝑥 − 𝑀𝑠 

(8) 

 

The cost of the hardware area is bigger when the block 𝐵𝑖  is 

implemented in HW; therefore the coefficients 𝑐𝑖 are all 

positives.  Consequently, the problem described in (8) can be 

resolved using the Balas’ technique.  

B. Balas Method 

The Balas’ algorithm is explained in [23]. Fig. 6 shows a 

simplified version of the steps of the algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Simplified version Balas’ algorithm 

 

 

 

Set S= 0 

Attempt to fathom S. 

Is the attempt successful? 

If the best feasible 

completion of S has 

been found and is better 

than the incumbent, 

store it as the new 

incumbent. 

Augment S on the 

right by 0 or 1 on 

any free variable. 

Locate the rightmost element of S 

which is not fathomed. If none 

exists, terminate. Otherwise, 

replace the element by its 

complement and delete all elements 

to the right. 

http://innove.org/ijist/


International Journal of Information Science & Technology –iJIST, ISSN : 2550-5114  

Vol.2 No.2, 2018 
 

http://innove.org/ijist/           25 

The method requires a LP in canonical form with 𝑐𝑖  ≥ 0 : 

 

min  𝑧 = ∑ 𝑐𝑖 ∗ 

𝑛

𝑖=1

𝑥𝑖  

𝑥𝑖  ∈ {0, 1} 

∑ 𝑎𝑖𝑗 ∗ 

𝑛

𝑖=1

𝑥𝑖  ≤  𝑏𝑗            1 ≤ 𝑗 ≤ 𝑚 

                      (9) 

 

The method is a tree method which progressively fixe to 0 

or to 1 the variables 𝑥𝑖. 

A vertex 𝑆𝑡 of the tree corresponds to a partial solution, for 

which a subset 𝐹(𝑡) of variablesxi are fixed to 0 or 1.The 

remaining variables form the set of free variables 𝐿(𝑡). In 

𝐹(𝑡), we distinguish two subsets, the subset of variables fixed 

to 0 noted 𝐹0(𝑡), and the subset of variables fixed to 1 noted 

𝐹1(𝑡). We choose a variable 𝑥𝑖  from 𝐿(𝑡) and we set it to 0 or 

1 which gives two new nodes (children). 

For each new created node 𝑆𝑡, the problem (9) becomes as 

follows: 

 

min 𝑧𝑡 = ∑ 𝑐𝑖

𝑖∈𝐿(𝑡)

∗ 𝑥𝑖 + ∑ 𝑐𝑖

𝑖∈𝐹1(𝑡)

 

 

∑ 𝑎𝑖𝑗 ∗ 𝑥𝑖  ≤  𝑏𝑗 −  ∑ 𝑎𝑖𝑗 =  𝑠𝑗1 ≤ 𝑗 ≤ 𝑚

𝑖∈𝐹1(𝑡)𝑖∈𝐿(𝑡)

 

                      (10) 

 

1) Node evaluation 

After the creation of a new node 𝑆𝑡, it is evaluated. As the 

objective is to minimize  𝑧𝑡, and as all the coefficients 𝑐𝑖 are 

all positive, the evaluation of the node 𝑆𝑡 is as follows: 

  

𝐸𝑣𝑎𝑙(𝑆𝑡) =  ∑ 𝑐𝑖𝑖∈𝐹1(𝑡)                 (11) 

       

2) Node fathoming 

After the creation of a new node𝑆𝑡, the following tests are 

executed in order: 

a. Test 1: 

𝑆𝑡 is abandoned if the evaluation of the node is 

bigger than the provisional solution. 
 

b. Test 2: 

𝑆𝑡Is a terminal node if the evaluation of the node is 

less than the provisional solution and all 𝑠𝑗 are  

positives. 
 

c. Test 3: 

𝑆𝑡 is abandoned if the solution is not realizable. 

This is the case for which some constraints are not 

satisfied:  

∃ 𝑗 ∈ [1, 𝑚]: ∑ 𝑀𝑖𝑛(0, 𝑎𝑖𝑗) > 𝑠𝑗

𝑖∈𝐿(𝑡)

 

 

 

 

d. Test 4: 

For any constraint (j), if the sum of negative 𝑎𝑖𝑗  

but an 𝑎𝑝𝑗 is bigger than 𝑠𝑗 then 𝑥𝑝 is set to 1,and 

if the sum of negative 𝑎𝑖𝑗  and a positive 𝑎𝑝𝑗 is 

bigger than 𝑠𝑗 then 𝑥𝑝 is set to 0:  

 

𝑖𝑓   ∃ 𝑗 ∈ [1, 𝑚] 𝑎𝑛𝑑  ∃ 𝑝 ∈ (𝑡) ∶     
 

∑ 𝑀𝑖𝑛(0, 𝑎𝑖𝑗) + |𝑎𝑝𝑗| > 𝑠𝑗

𝑖∈𝐿(𝑡)

 

 

Then: 

   𝑥𝑝 = 0    𝑖𝑓 𝑎𝑝𝑗 > 0 

       𝑥𝑝 = 1    𝑖𝑓 𝑎𝑝𝑗 < 0  

 

3) The choice of branching 

The adopted method is called depth first; the deepest node 

is developed first. For the separation of branch on a variable𝑥𝑖, 

the child node “𝑥𝑖 = 1”is treated first. An index 𝑖 is associated 

to each fixed variable in the form of “+𝑗” if 𝑥𝑖 is fixed to 1 

and in the form of “−𝑗” if 𝑥𝑖 is fixed to 0.  

Therefore, in the backtrack, the algorithm goes up until it 

reaches the top level above the variable from which the 

fathoming was done, if it is negative, it corresponds to a 

processed child, if it is positive, the algorithm takes the other 

branch, which corresponds to the complement of the value of 

that variable, and tries to fathom the new partial solution. 

 

4) Decision of node separation 

Let 𝑄(𝑡) = { 𝑗 |𝑠𝑗 < 0 } the set of lines for which the 

constraint is negative. 

 And 𝑅(𝑡) the set indexes of free variables 𝑥𝑖 having at least 

one negative coefficient 𝑎𝑖𝑗  from 𝑄(𝑡): 

𝑅(𝑡) = {𝑖 ∈ 𝐿(𝑡), ∃ 𝑗 ∈  𝑄(𝑡), 𝑎𝑖𝑗 < 0}. 

Let: 𝑃(𝑡) =  ∑ 𝑠𝑗 =  ∑ min (0, 𝑠𝑗)𝑚
𝑗=1𝑗∈𝑄(𝑡) .  

The proximity of a solution if 𝑥𝑖 is set to 1 is: 

𝑃(𝑡, 𝑖) =  ∑ min (0, 𝑠𝑗 − 𝑎𝑖𝑗) 

𝑚

𝑗=1

 

                     (12) 

 

 The choice of the variable of separation  𝑖∗ is the variable 

with the maximum proximity value: 

𝑃(𝑡, 𝑖∗) = 𝑀𝑎𝑥{𝑃(𝑡, 𝑖)/𝑖 ∈ 𝑅(𝑡)} 

                      (13) 
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C. Example 

In this example, we consider a system (ES) with 5 blocks 

𝐵 = {𝐵1, 𝐵2, 𝐵3 , 𝐵4, 𝐵5}.  

The problem (8) to optimize is as follows: 

𝑀𝑖𝑛: 3𝑥1 + 5𝑥2 + 4𝑥3 + 10𝑥4 + 𝑥5 

2𝑥1 − 3𝑥3 − 4𝑥4 + 𝑥5  ≤  −2     (1) 

−2𝑥2 − 2𝑥3 − 𝑥4 ≤ −4                (2) 

𝑥1 − 2𝑥2 + 2𝑥3 − 𝑥4 + 3𝑥5 ≤ 4  (3) 

𝑥𝑖  ∈ {0,1},   1 ≤ 𝑖 ≤ 5 

 

1) The root node 𝑆0 

For the node 𝑆0: 

𝐿(0) = {1, 2, 3, 4, 5} 

𝑄(0) = {1, 2},  

𝑅(0) = {2, 3, 4} 

The evaluation of 𝑆0is 0. The proximity calculation is given 

in table IV. 

 
TABLE IV 

PROXIMITY CALCULATION FOR 𝑆0 

Coefficients and second members 𝑠𝑗 − 𝑎𝑖𝑗 

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑆0 𝑥2

= 1 

𝑥3

= 1 

𝑥4

= 1 

2 0 -3 -4 1 -2 -2 1 2 

0 -2 -2 -1 0 -4 -2 -2 -3 

1 -2 2 -1 3 4 6 2 5 

     𝑃(0) -4 -2 -3 

 

The maximum proximity is obtained at 𝑥3, 𝑥3is therefore 

the point of separation. We start by the branch 𝑥3 = 1, the 

branch 𝑥3 = 0 will be processed later.    

 

2) The node 𝑆1 

For the node 𝑆1: 
𝑥3 = 1 

𝐿(1) = {1,2,4,5} 

𝐹1(1) = {3} 

𝑄(1) = {2} 

𝑅(1) = {2,4} 

The evaluation of 𝑆1is 4. The completion of the other 

variables (𝑥1 = 𝑥2 = 𝑥4 = 𝑥5 = 0) gives a non-realizable 

solution as the constraints (2) is violated (−2 ≤ −4), 

therefore 𝑆1 is not a provisional solution. 

The proximity calculation for 𝑆1is given in table V. 

 
TABLE V 

PROXIMITY CALCULATION FOR 𝑆1 

Coefficients and second 

members 

𝑠𝑗 − 𝑎𝑖𝑗  

𝑥1 𝑥2 𝑥4 𝑥5 𝑆1 𝑥2

= 1 

𝑥4

= 1 

2 0 -4 1 1 1 5 

0 -2 -1 0 -2 0 -1 

1 -2 -1 3 2 4 3 

    𝑃(1) 0 -1 

 

The maximum proximity is obtained at 𝑥2, 𝑥2 is therefore 

the point of separation. We start by the branch 𝑥2 = 1, the 

branch 𝑥2 = 0 will be processed later. The solution 𝑆1is then 

marked with “+j”. 

 

3) The node 𝑆2 

For the node 𝑆2: 

𝑥3 = 1, 𝑥2 = 1 

𝐿(2) = {1, 4, 5} 

𝐹1(2) = {2, 3} 

The evaluation of 𝑆2is 9. The completion of the other 

variables (𝑥1 = 𝑥4 = 𝑥5 = 0) gives a realizable solution, 

therefore 𝑆2 is a provisional solution and 𝑆2 is a terminal node. 

 

4) The node 𝑆3 

This node corresponds to a backtrack situation, we go back 

until the top of the branch, in this case we go back until 𝑆0 and 

we process the branch 𝑥3 = 0 and we mark 𝑆0 with “-j“. The 

node 𝑆3 is abandoned as it leads to a non-realizable solution. 

In fact, the test 3 fails, because for the constraint (2) we have: 

∑ 𝑀𝑖𝑛(0, 𝑎𝑖𝑗) > 𝑠𝑗𝑖∈𝐿(𝑡)  : 

−3 > −4 

 

5) The node 𝑆4 

We go down until a node marked with “+j“. In this case, we 

process the right hand of 𝑆1 and we mark 𝑆1 with “-j“. 

For 𝑆4: 

𝑥3 = 1, 𝑥2 = 0 

𝐿(4) = {1,4,5} 

𝐹1(4) = {3} 

𝐹0(4) = {2}.  

The node 𝑆4 is abandoned as it leads to a non realizable 

solution. In fact, the test 3 fails, because for the constraint (2) 

we have: 

∑ 𝑀𝑖𝑛(0, 𝑎𝑖𝑗) > 𝑠𝑗𝑖∈𝐿(𝑡)  : 

−1 > −2 

 

6) Termination 

The algorithm terminates there is no node to process. The 

solution found in the node 𝑆2 is the optimal solution:          

𝑥1 = 𝑥4 = 𝑥5 = 0 and 𝑥2 = 𝑥3 = 1, the evaluation is 9. The 

developed tree is shown in Fig. 7. 

 

 
 

Fig. 7.Tree of Balas’ method 
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The solution of the HSP problem is then:  

- The blocks {𝐵2, 𝐵3} are in HW  

- The blocks {𝐵1 , 𝐵4, 𝐵5} are in SW.  

VI. EXPERIMENTS 

In this section we give the results of experiments for the 

first proposed approach.  

We implemented the three algorithms (0-1 Knapsack 

Problem algorithm, Genetic Algorithm, Simulated Annealing 

algorithm) in Java, and made a number of tests for different 

number of blocks. The metrics, the coefficients and the 

hardware area constraint are generated randomly. The metrics 

of each block are reel numbers and the software execution 

time of each block is always bigger than the hardware 

execution time. The coefficients are strictly positive integers. 

The hardware area constraint is and integer number smaller 

than the sum of the hardware area of all blocks.  

Fig. 8 gives the comparison of the profit obtained using the 

three algorithm (KP, GA and SA). The results show that the 

profit obtained using KP algorithm and GA algorithm are 

almost identical and always bigger than the profit obtained 

using SA algorithm. GA and SA algorithms fail to converge in 

some cases, especially with small values of hardware area 

constraint.  

 

 
Fig. 8. Comparison between the profits of algorithms 

 

Fig. 9 gives the hardware area obtained for each algorithm. 

In case of non-convergence, the GA and SA algorithms don’t 

respect the hardware area constraint. This latter is always 

respected by KP algorithm.  

 

 
Fig. 9. HW area of algorithms vs. HW area constraint 

 

Fig. 10 gives a comparison between the algorithms in term 

of their execution time. The results show that KP and SA are 

very fast comparing to GA algorithm. 

 

 
Fig. 10. Algorithms’ execution time comparison 

 

VII. CONCLUSION 

In this article, we proposed two novel approaches to solve 

the multi-objective Hardware Software Partitioning problem. 

The first approach aims to optimize several metrics under a 

constraint on the global hardware area. The second approach 

has the objective of minimizing the global hardware area 

while respecting the constraints on the other metrics. The 

principle of the first approach is based on the profit obtained 

when implementing each block in hardware. The profit is a 

weighted sum function of each metric’s benefit when the 

block is implemented in hardware over its implementation in 

software. The approach is implemented using 0-1 Knapsack 

Problem algorithm and compared to Genetic Algorithm and 

Simulated Annealing algorithm. Experimental results show 

that the KP algorithm is the best choice to implement the 

proposed approach; in fact, KP is very fast and gives best 

solutions comparing to GA and SA algorithms. The principle 

of the second approach is based on Balas method. As future 

works, we will implement the second proposed approach, and 

compare the two approaches with recent algorithms. We will 

also demonstrate their effectiveness on some practical 

examples. 
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