
 

  

Abstract— A dynamic portfolio allocation is discussed in asset 

management with fuzziness. By perception-based extension for 

fuzzy random variables, a dynamic portfolio model for weighted 

average value-at-risks of fuzzy random variables is introduced. 

By mathematical programming and dynamic programming, this 

paper derives analytical solutions of the optimization problem for 

dynamic worst scenarios. A few numerical examples are given to 

discuss the obtained results. It is shown that the weighted average 

value-at-risk gives a more reasonable criterion than value-at-risk. 

 
Index Terms— Weighted average value-at-risk, risk-sensitive 

portfolio, fuzzy random variable, perception-based extension, 

portfolio allocation, drastic decline, pessimistic-optimistic index, 

possibility-necessity weight. 

 

I. INTRODUCTION 

HIS paper deals with a dynamic allocation model with 

portfolio optimization in fuzzy asset management. When 

the financial crisis in September 2008 and the China's stock 

market crashing in May 2015, we have experienced the serious 

distrust about the stock market because of doubtful information 

among investors and the market. No one can foretell that 

similar financial crisis will never happen in future. Some of the 

serious distrust observed at that time and the risky information 

regarding banks and security companies are coming from the 

imprecision of information. The fuzzy logic is a tool to describe 

the imprecision of data because of a lack of knowledge, and 

such serious distrust in the stock market will be represented by 

the fuzziness of information in finance models. Optimization in 

fuzzy logic framework was studied firstly as decision-making 

with fuzzy goal, which was introduced by Bellman and Zadeh 

[25], and the portfolio optimization with fuzziness has been 

developed with possibility measures and necessity measures by 

Tanaka and Guo [15], Tanaka et al. [16], Watada [18], Katagiri 

at al. [4] and so on. Soft computing like fuzzy logic works 

effectively for finance models in uncertain environments. To 

represent the uncertainty, in this paper we use fuzzy random 

variables which have two kinds of uncertainties, i.e. 

randomness and fuzziness. In this model, randomness is used to 
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represent the uncertainty regarding the belief degree of 

frequency, and fuzziness is applied to description regarding 

linguistic imprecision of data because of a lack of knowledge 

about the current stock market. Fuzzy random variables, which 

were introduced by Kwakernaak [7], are applied to 

decision-making under uncertainty with fuzziness like 

linguistic data in statistics, engineering and economics. By 

using the perception-based approach in Yoshida [20],[21], the 

criteria for real-valued random variables are extended to a 

criteria for fuzzy random variables, and this paper applies 

perception-based criteria to a dynamic optimization model with 

uncertainty. Yoshida [19] studied the defuzzification of the 

mean and the variance of fuzzy random variables, and then 

fuzzy random variables are evaluated by the expectation and 

these criteria with pessimistic-optimistic parameters and 

possibility-necessity parameters. These parameters are given 

by the decision maker and they are based on his certainty about 

information in the stock market 

Portfolio theory in financial engineering is a powerful 

technique to hedge risks in asset management, and the mean 

and variance portfolio model, where the expected rewards are 

maximized and the risks are minimized, is studied by many 

researchers ([8],[9],[12],[15]). Then the variance was used as a 

criterion of risks in classic models. Recently drastic declines of 

asset prices are studied, and value-at-risk (VaR) is used widely 

to estimate risks when asset prices decline rapidly with worst 

scenarios. Nowadays value-at-risk is a standard tool to indicate 

the risk concerning worst scenarios in financial investment. 

However it does not have coherency. Coherent risk measures 

have been studied to improve the criterion of risks with worst 

scenarios by Artzner et al. [1] and so on. Several improved risk 

measures based on value-at-risks are proposed: for example, 

conditional value-at-risk, expected shortfall, entropic 

value-at-risk (Rockafellar and Uryasev [11]; Tasche [13]). 

Kusuoka [6] also gave a spectral representation for coherent 

risk measures. Average value-at-risk defined by value-at-risks 

is a coherent risk measure, and Yoshida [24] have discussed a 

portfolio optimization problem for dynamic worst scenarios 

with average value-at-risks of the returns with fuzziness using 

the results in Yoshida [19],[21],[22],[23]. 

This paper focuses on decision making to obviate the worst 

sharp decline such as worldwide stock market flash crash which 

have heavy impact for a long time. Using weighted average 
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value-at-risks and dynamic programming, we obtain analytical 

solutions for risk-minimization of dynamic systems under 

uncertainty, and further we investigate concrete solutions in 

case of normal distributions. In numerical example, we 

compare three criteria given by value-at-risks, average 

value-at-risks and weighted average value-at-risks. 

In Section 2, we introduce a portfolio allocation model and 

we discuss the drastic decline of asset prices using 

value-at-risks. In Section 3, we introduce fuzzy numbers and 

fuzzy random variables, and we discuss weighted average 

value-at-risks and their extension for fuzzy random variables 

and dynamic systems. In Section 4, we give estimation tools 

with lambda-mean functions and evaluation weights in order to 

evaluate the randomness and fuzziness of fuzzy random 

variables. In Section 5, we introduce a dynamic portfolio 

allocation model using fuzzy random variables. We investigate 

risk-minimizing problems with weighted average value-at-risks 

at a current time by mathematical programming, and we discuss 

the dynamic portfolio optimization by dynamic programming. 

In Section 6 we obtain concrete solutions in case of normal 

distributions. In Section 7 we give a few numerical examples 

and we investigate the solutions of the dynamic portfolio 

optimization problem. Then we find the weighted average 

value-at-risk gives a more reasonable criterion than 

value-at-risk and average value-at-risk. 

 

II. DECISION-MAKING WITH PORTFOLIO WEIGHTS 

We introduce dynamic portfolio decision-making with n risky 

securities and an expiration date T, where n and T are positive 

integers. Let P be a non-atomic probability measure on a 

sample space , and let M be a sigma-field of . For an asset i 

= 1, 2, ···, n, a dynamic stock price is given by a sequence of 

real-valued random variables { i
tS }, where the initial stock 

price 0
iS is a positive number, and the rates of return i

tR are 

defined by real-valued random variables satisfying  

1(1 )i i i
t t tS S R−= + ,                                                                      (1) 

and then 1 i
tR+ is non-negative. Let R  be the set of all real 

numbers. We deal with portfolio weight vectors  

1 2( , ,..., )n
t t tw w w  in n

R  satisfying 1i
ti

w = and  i
tw  are 

non-negative for all asset i. At time t, the rate of return with a 

portfolio weight vector 1 2( , ,..., )n
t t tw w w is given by 

i i
t t ti

R w R=   and then we give 

1(1 )t t tS S R−= +                                                                     (2) 

for each time t. We discuss the sharp decline of prices in asset 

management ([23]). A scenario  in  such that the theoretical 

bankruptcy happens at time t implies 1( )tS − is positive and 

( )tS  is non-positive, and then we have ( ) 1tR   −  from (2). 

In a similar idea, for a constant   between 0 and 1,  

( tp P R =  − )                                                                      (3) 

is a probability of 100 %-falling. On the other hand for a 

positive probability p, a value-at-risk is a real number v 

satisfying 

( tp P R v=  ) .                                                                     (4) 

From (3) and (4), we get v − = . Thus throughout this paper 

we note that the minimization of risk values  is equivalent to 

maximization of value-at-risks v.  

 

III. FUZZY RANDOM VARIABLES AND THE CRITERIA 

In this paper, we represent fuzzy numbers on R  by 

membership functions a , which is a mapping from R  to [0,1], 

and their -cuts are represented by closed intervals a = 

[ , ]a a 
− +  ([25]). For fuzzy numbers a  and b , fuzzy max order  

a  b  implies a b 
  for all  between 0 and 1 ([19]). For a 

positive probability p and an integrable real-valued random 

variable X on  with a strictly increasing and continuous 

cumulative distribution function XF , the value-at-risk is 

defined by a percentile 1VaR ( )p XF p−= , which is given by the 

inverse function of XF , and then the average value-at-risk and 

the weighted average value-at-risk are defined respectively by 

0

1
AVaR ( ) VaR ( ) ,

p

p qX X dq
p

=                                           (5) 

0 0
WAVaR ( ) VaR ( ) ( ) ( ) ,

p p

p qX X h q dq h q dq=                (6) 

where h is a non-increasing and nonnegative-valued weight 

function on (0,1] whose integrand equals to 1. It is known in 

Artzner et al. [1] that the risk measure − VaRp is not coherent 

however − AVaRp and − WAVaRp are coherent risk measures. 

This paper estimates the rates of return by coherent risk 

measures − AVaRp and − WAVaRp. 

A map X from   to the set of all fuzzy numbers is called a 

fuzzy random variable if X
  are real-valued random variables 

for all , where the -cuts of X are ( ) [ ( ), ( )]X X X    − +=  

for . A perception-based expectation of a fuzzy random 

variable is a fuzzy number given by  

: ( )

( ) sup inf ( )( ( ))
X E X x

E X X X


 
=

=                                        (7) 

for x in R , where E( ) is the expectation of real-valued random 

variables ([5]). Similarly, for a positive probability p, average 

value-at-risk and weighted average value-at-risk of fuzzy 

random variables are introduced respectively by 

:AVaR ( )

AVaR ( )( ) sup inf ( )( ( ))
p

p

X X x

X x X X


 
=

= ,                  (8) 

:WAVaR ( )

WAVaR ( )( ) sup inf ( )( ( ))
p

p

X X x

X x X X


 
=

=             (9) 

for x in R . These extended criteria (8) and (9) have the 

following properties ([21]). 

 

Lemma 1. For a positive probability p, AVaR p  and 

WAVaR p  are monotone, positively homogeneous and 
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translation invariant. 

 

Let G be a sub-sigma-field of M  and let ( )E     G be the 

conditional expectation. We give value-at-risk and weighted 

average value-at-risk of real-valued random variables X under 

condition G as follows:  

{ }VaR ( }) sup{ | (1 X xp x E p    = G G)                  (10) 

with the characteristic function 1{ }, and  

0 0
WAVaR ( | ) VaR ( | ) ( ) ( ) .

p p

p qX X h q dq h q dq=  G G  (11)  

Hence we can give G -measurable fuzzy random variables

WAVaR ( | ),p    G which is defined in the same way as (9), and 

then WAVaR ( | )p    G has the following similar properties. 

 

Lemma 2. Let p be a positive probability and let X and Y  be 

fuzzy random variables. Let G  be a sigma-field generated by

Y . Assume X and G are independent. Then WAVaR ( | )p    G

is monotone, positively homogeneous and translation invariant, 

and the following (i) and (ii) hold. 

(i) WAVaR ( | ) WAVaR ( ).p pX X =  G  

(ii) . WAVaR ( | )p Y Y =G  

 

IV. ESTIMATIONS OF FUZZINESS 

Defuzzification of fuzzy numbers is studied by many authors 

([3]). Here we introduce a defuzzification method in [19]. Let 

([ , ]) (1 )g x y x y  =  + −                                                 (12) 

for closed intervals [x, y], where  is a constant between 0 and 

1. Then (12) is called a lambda-mean function and  is called 

the pessimistic index if  is 1, and it is called the optimistic 

index if  is 0 ([3]). We give a mean value of a fuzzy number a

by lambda-mean function (12) and an evaluation weight w() 

as follows ([19]): 
1 1

0 0
( ) ( ) ( ) ( ) .E a g a w d w d 

    =                             (13) 

Hence, w() is called the possibility evaluation weight if w() 

is 1 for  between 0 and 1, and it is called the necessity 

evaluation weight if w() is 1 −  for  between 0 and 1. For  

between 0 and 1, the mean E
 has the following natural 

properties ([19]). 

 

Lemma 3. ([19]). The expectation ( )E  is monotone, 

positively homogeneous, additive and translation invariant. 

 

For a fuzzy random variable X , the expectation of the mean 

( ))(EE X follows 

1 1

0 0
( )) ( ) ( ) ( .( ) )E X E g X wE d w d 

    
 

=      
        (14)  

From Lemma 3, we obtain the following results for (14) ([19]). 

 

Lemma 4. Let X  be a fuzzy random variable, let Z be a 

real-valued random variable and let a  be a fuzzy number. Then 

(( ))E E   is monotone, positively homogeneous and additive, 

and the following (i) - (iii) hold. 

(i) ( )) ( ))( ( .E E X E E X =   

(ii) .( )(( ))E E a E a =   

(iii) .( )(( ))E E Z E Z =   

 

Let A  be a family of fuzzy random variables X for which 

there exist a real-valued random variable X and a fuzzy number

a  such that ( ) ( )X X a  =  + for  and  between 0 and 1. 

Lemma 4(i) implies the expectation )(E   and the mean ( )E   

are exchangeable. On the other hand, the following proposition 

can be easily checked by (6), (9) and Lemma 1. 

 

Proposition 1. For a positive probability p and a fuzzy 

random variable X  in A , it holds that 

(WAVaR ( )) WAVaR )).(p pE X E X = (                        (15) 

 

V. DYNAMIC WEIGHTED AVERAGE VALUE-AT-RISKS AND 

FUZZY RANDOM VARIABLES 

We introduce a dynamic portfolio allocation model with 

fuzzy random variables. Let i
tR  be the rates of return in Section 

2. We deal with the following fuzzy random variable in A : 

( ( )) ( ) ( )i i i
t t tR R a  =  +                                                (16) 

for   in   and   between 0 and 1, where i
ta  is a fuzzy 

number. Hence we assume  

1 0i
tR+                                                                            (17) 

for all asset i and time t. For a portfolio 1 2( , ,..., )n
t t tw w w , the rate 

of return with the portfolio follows 

,i i
t t ti

R w R=                                                                   (18) 

and we give the asset price by 1(1 )t t tS S R−= +  for t = 1, 2, …, 

T. We assume the initial asset price is a real number 0 1S =  for 

simplicity.  Then we have 

:

(1 )t s

s s t

S R



= +                                                                (19) 

for t = 1, 2, …, T. Let tM be the sigma-field generated by 

random variables { i
sR  |  s = 1, 2, …, t;  i = 1, 2, …, n } for 

positive t and let 0M ={  , }. Hence we assume random 

variables i
tR  is independent of the past information 1t−M . 

Then we have 1 1WAVaR ( | ) (1 WAVaR ( ))p pt t t tS S R− − = +  M  

from Lemmas 1 and 2. Hence we deal with the following 

portfolio optimization problem for worst scenarios with 

weighted average value-at-risks. Let  between 0 and 1, and let 

a positive discount rate . 
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Problem 1. Maximize the dynamic minimum regarding 

weighted average value-at-risks of the asset prices: 

 1

:1
: 1

min (1 ( ( ))(1 WAVaR ( ( ))t
s p t

t t T
s s t

E E R E R  −

 
 −

+ ) + )   (20) 

with portfolios 1 2( , ,..., )n
t t tw w w . 

 

VI. DYNAMIC PORTFOLIO OPTIMIZATION WITH WEIGHTED 

AVERAGE VALUE-AT-RISKS   

Firstly we investigate the rates of return with portfolios at 

time t. Let the mean and the covariance of the rates of return i
tR  

by ( ( ))i i
t tE E R = and ij

t = ( ( ), ( ))i j
t tCov E R E R  for i, j 

=1, 2, … , n. Let 

1

2
,t

n








 
 
 =
 
 
 

 t 

11 12 1

21 22 2

1 2

,

n
t t t

n
t t t

n n nn
t t t

  

  

  

 
 
 

=  
 
 
 

 1

1

1
,

1

 
 
 =
 
 
 

 

At = 1T 1
t
− 1, Bt = 1T 1

t t− , Ct = T 1
t t t − and 2 ,t t t tA C B = −

where T implies the transpose of a vector and we assume the 

determinant of the matrix t is not zero. Then there exists an 

inverse matrix 1
t
− and At is positive. This assumption is natural 

and it can be realized easily by taking care of the combination 

of assets. For a portfolio 1 2( , ,..., )n
t t tw w w , the expectation and 

the variance are given respectively by 

( ( )) i i
t t ti

E E R w =   and 
,

.i j ij
t t ti j

w w                      (21) 

This paper discusses portfolio optimization where the value- 

at-risk VaR ( ( ))p tE R
 has the following representation: 

VaR ( ( ))p tE R
 

=  (the mean) –  (p)   (the standard deviation),               (22) 

where the positive constant  (p) is given corresponding to 

probability p. One of the sufficient conditions for (22) is what 

the rates of return i
tR  have normal distributions. From (6),(21), 

(22) and Proposition 1 we have 

,
WAVaR ( ( ) ,i i i j ij

p t t t t t ti i j
E R w w w   ) = −         (23) 

where  

0 0
( ) ( ) ( ) .

p p

q h q dq h q dq =                                           (24) 

Then by dynamic programming we obtain the following 

theorem. 

 

Theorem 1. Let a sequence { vt } by the following optimality 

equations: 

1

,

( ,..., )
1

1 ,

max min

(1 )
n

t t

i i i j ij
t t t t t

i i j
t

i iw w
t t t

i

w w w

v

w v

  

  +

 + −
 
 

=  
 +
  

 


           (25) 

for t = 1, 2, …, T − 1, and 

1( ,..., )
,

max 1 .
n

T T

j iji i i
T T T T T T

w w
i i j

v w w w  
 
 = + −
 
 

                (26) 

Then v1 is the optimal weighted average value-at-risk for 

Problem 1. 

 

Hence we assume t is positive and   satisfies 2 > t / t for 

all t. Now we deal with the following optimization at a fixed 

time t to get concrete representation for dynamic equation (25). 

 

Problem 2. Maximize weighted average value-at-risk 

,
WAVaR ( ( ) i i i j ij

p t t t t t ti i j
E R w w w   ) = −          (27) 

with potofolios 1 2( , ,..., )n
t t tw w w . 

 

In a similar way to [24], we get the following lemma for 

Problem 2. 

 

Lemma 5. The maximum weighted average value-at-risk for 

Problem 2 is 

2
t t t

t

B A

A

 − −   
.                                                  (28) 

Then the corresponding expected rates of return is 

*

2

t t
t

t t t t

B

A A A




  
= +

− 
,                                          (29) 

and the optimal portfolio is given by 
*
tw = * 1

t t − 1+ * 1
t t t −                                              (30) 

with 
*

* t t t
t

t

C B 


−  
=


 and 

*
* t t t
t

t

A B


 −  
=


.                         (31) 

 

Now we go back to the dynamic optimization problem. 

Finally we can check the following theorem from Theorem 1 

and Lemma 5. 

 

Theorem 2. Assume At, Bt and t are positive, and let  

satisfy 2 > t /t for all t. Let { *
t  } and { vt } be sequences 

defined inductively by the following backward optimality 

equations: 
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*
t = 

2

2

2
1

1,2

2

2
1

2

2
1

if 2
(1 )

( 1) ( 2 )
max

if 2  and 
(1 )

2( )

if 2  and ,
(1 )

t t

t t t t

t t t

t

l
t t t t t t t

l
t t

t t t t t

t

t t

t t

t t t t t

t

B

A A A

A B C
v

B A B C

A

A B C A
v

C A

A B

A B C A
v















+

=

+

+

  
+

− 

          + + 
 −

 +  + − + +  − 

− 


         + +   
−

−

+

         + +  = 
−















 (32) 

vt = 

2

2

2
1

*
1

if 2
(1 )

(1 )      otherwise

t t t t

t

t t t

t

t t

A B A

A

A B C
v

v







 

+

+

 +  − −   





                          + + 
−


+  




         (33) 

for t = 1, 2, …, T − 1, and  

2

1 ,
T T T

T
T

B A
v

A

 − −   
= +                                              (34)                             

where  
2

1

2

(1 )
.t t

t

v



+  −  
 =                                                          (35) 

Then v1 is the optimal weighted average value-at-risk for 

Problem 1. 

 

Corollary 1. The optimal portfolios in Theorem 2 are given 

by Lemma 5 with the expected rate of return *
t  in (32).  

 

VII.  NUMERICAL EXAMPLES 

Let p be a positive probability. We assume i
tR  obeys a 

normal distribution, and then the constant  in (24) is given by 

1

0 0
( ) ( ) ( ) .

p p

q h q dq h q dq −= −                                      (36) 

Here  is the cumulative distribution function of the standard 

normal distribution. We deal with the following fuzzy random 

variable i
tR in A : 

( ( )) ( ) ( )i i i
t t tR R a  =  +                                                 (37) 

for  in   and  between 0 and 1, where i
tR  is a real-valued 

random variable with the mean ( )i
tE R  and i

ta  is a fuzzy 

number such that ( ) [ (1 ), (1 )]i i i
t t ta c c  = − − −  for  between 

0 and 1 with positive constants i
tc , which are called fuzzy 

factors. We investigate a case of pessimistic and necessity, i.e. 

 is 1 and w() is 1 − . Let 4n = , i.e. 4 assets. We give the 

expected rates of return t  with fuzzy factors and a 

variance-covariance matrix t  by Tables I and II. At time t, we 

can easily calculate At is 10.6543, Bt is 0.695848, Ct is 

0.0476225 and t  is 0.0231799.  

 

Example 1. In case of ( ) 1h q = for all q, the weighted average 

value-at-risk (6) is reduced to the average value-at-risk (5). We 

discuss a case of less than 1% part of the standard normal 

distribution, i.e. p is 0.01. Then  is 2.66521 from (36). From 

Lemma 5 we can calculate that the optimal portfolio *
tw  for 

Problem 2 is (0.207187, 0.215747, 0.30793, 0.269136), and 

then the corresponding the expected rate of return *
t is 

0.0655616 and the weighted average value-at-risk

WAVaR ( ( )p tE R ) follows − 0.751087.  Namely the risk 

value, which we write as   for simplicity, is 0.751087.  We 

may also select the optimistic index, i.e.  is 0, and the 

possibility evaluation weight, i.e. w() is 1. In practical 

financial asset management, decision maker can select 

optimistic index  and possibility evaluation w() based on his 

preference (see Table III). From Table III we can observe that 

the minimum risk value  is estimated between 0.74292 and 

0.751087 and the expected rate of return *
t  is also estimated 

between 0.0655616 and 0.0737282. 

 

Example 2. Take another weight function 

1
( )

2
h q

q
=                                                                      (38) 

for (0,1].q  When p is 0.01, we also have  is 2.95582 from 

(36), and by Lemma 5 we calculate the optimal portfolio *
tw  is 

(0.206852, 0.215318, 0.308563, 0.269267). The corresponding 

the expected rate of return is 0.065537 and the risk value  is 

0.840131. 

 

 

Table I: Expected rates of return i
t with fuzzy factors 

 ( )i
tE R  i

tc  

i = 1 0.08 0.007 

i = 2 0.09 0.009 

i = 3 0.05 0.006 

i = 4 0.07 0.007 

 

 

Table II: Variance-covariance matrix with ij
t  

 j = 1 j = 2 j = 3 j = 4 

i = 1 0.37 0.06 0.07 − 0.06 

i = 2 0.06 0.39 − 0.08 0.09 

i = 3 0.07 − 0.08 0.35 − 0.05 

i = 4 − 0.06 0.09 − 0.05 0.38 
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Table III: The minimum risk values  and  

the expected rates of return *
t  

  *
t  

pessimistic and necessity 0.75109 0.0655616 

optimistic and possibility 0.74292 0.0737282 

 

 

Now we compare three risk criteria with value-at-risk, 

average value-at-risk and weighted average value-at-risk. Fig.1 

illustrates the minimum risk values  corresponding to 

probabilities p in cases of three cases. From Fig.1 we find the 

minimum risk values  pass the risk zero line at p  0.4 when 

value-at-risk and  pass it at p   0.85 when average 

value-at-risk respectively. The risk zero line implies risk-free, 

and these phenomena passing the risk-free line are usually 

abnormal. Therefore we see that the risk criterion with average 

value-at-risks is more reasonable than one with value-at-risks 

because the reasonable range for probabilities p is wide. In the 

same reason, the risk criterion with weighted average 

value-at-risks is more reasonable than one with average 

value-at-risks. 

 

 

 
Figure 1: The minimum risk values   

 

 

Let a discount rate 0.93 = and let a terminal time 20T =  in 

Example 2. In dynamic case, vt is the minimum regarding 

average value-at-risk between current time t and the terminal 

time. By Theorem 2 we observe dynamic movement of { vt  } in 

Fig.2 and we get the maximum average value-at-risks of the 

total asset prices v1 is  0.139812 for Problem 1. 

 

 

 
Figure 2: The sequence { vt } in Theorem 2 

 

 

VIII. CONCLUDING REMARKS 

This paper has discussed dynamic portfolio optimization in 

fuzzy asset management with weighted average value-at-risks 

by mathematical programming and dynamic programming. The 

main topic is the risk-minimization of dynamic systems in the 

worst case of uncertainty using weighted average 

value-at-risks. The results in this paper will be useful for 

practical financial portfolios to obviate the worst sharp falling 

and the flash crash such as worldwide stock market panic which 

has heavy impact for a long time. We also found the weighted 

average value-at-risk gives a more reasonable criterion than 

average value-at-risk and value-at-risk from numerical data. 

 

ACKNOWLEDGMENT 

This research is supported from JSPS KAKENHI Grant 

Number JP 16K05282. 

 

REFERENCES 

[1] P. Artzner, F. Delbaen, J.-M. Eber and D .Heath, “Coherent measures of 
risk,” Mathematical Finance, vol.9, pp.203-228, 1999.  

[2] R. E. Bellman and L. A. Zadeh, “Decision-making in a fuzzy 

environment,” Manag. Sci., Ser. B., vol.17, pp.141-164, 1970. 
[3] P. Fortemps and M. Roubens, “Ranking and defuzzification methods 

based on area compensation,” Fuzzy Sets and Systems, vol.82, pp.319-330, 
1996.  

[4] H. Katagiri, M. Sakawa, K. Kato and I. Nishizaki, “Interactive 

multiobjective fuzzy random linear programming: Maximization of possibility 
and probability,” European J Oper. Res., vol.188, pp.530-539, 2008. 

[5] R. Kruse and K. D. Meyer, Statistics with Vague Data, Riedel Publ. Co., 

Dortrecht, 1987.  

[6] S. Kusuoka, “On law-invariant coherent risk measures,” Advances in 

Mathematical Economics, vol.3, pp.83-95, 2001. 

[7] H. Kwakernaak, “Fuzzy random variables -- I. Definitions and theorem,” 
Inform. Sci., vol.15, pp.1-29, 1978.  

[8] H. Markowitz, Mean-Variance Analysis in Portfolio Choice and Capital 

Markets, Blackwell, Oxford, 1990.  
[9] S. R. Pliska, Introduction to Mathematical Finance: Discrete-Time 

Models, Blackwell Publ., New York, 1997.  

[10] R. T. Rockafellar and S. Uryasev, “Optimization of conditional 
value-at-risk,” J. of Risk, vol.2, pp.21-41, 2000. 

[11] R. T. Rockafellar and S. Uryasev, “Conditional value-at-risk for general 

loss distribution functions,” J. of Banking and Finance, vol.26, pp.1443-1471, 
2002. 

International Journal of Information Science & Technology – iJIST, ISSN :  2550-5114
                                                                                                                Vol.3 No.3, 2019

http://innove.org/ijist/ 44 



 

[12] S. M. Ross, An Introduction to Mathematical Finance, Cambridge Univ. 
Press, Cambridge, 1999. 

[13] S. Sarykalin, G. Serraino and S .Uryasev, “Value-at-risk vs. conditional 

value-at-risk in risk management and optimization," Tutorials in Informs 

Research, pp.270-294, 2008. 

[14] M. C. Steinbach, “Markowitz revisited: Mean-variance model in 

financial portfolio analysis," SIAM Review, vol.43, pp.31-85, 2001. 
[15] H. Tanaka, P, Guo, “Portfolio selection based on upper and lower 

exponential possibility distributions,” European J Oper. Res., vol.114, 

pp.115-126, 1999. 
[16] H. Tanaka, P. Guo and I. B. Turksen, “Portfolio selection based on fuzzy 

probabilities and possibility distributions,” Fuzzy Sets and Systems, vol.111, 

pp.387-397, 2000. 
[17] D. Tasche, “Expected shortfall and beyond,” J. of Banking and Finance, 

vol.26, pp.1519-1533, 2002.J. 

[18] Watada, “Fuzzy portfolio model for decision making in investment,” Y. 
Yoshida (ed): Dynamical aspects in fuzzy decision making, Physica-Verlag, 

Heidelberg, pp.141-162, 2001. 

[19] Y. Yoshida, “Mean values, measurement of fuzziness and variance of 
fuzzy random variables for fuzzy optimization,” Proceedings of SCIS \& ISIS 

2006, pp.2277-2282, Sept. 2006.  

[20] Y. Yoshida, “Fuzzy extension of estimations with randomness: The 

perception-based approach,” Proceedings of MDAI 2007, LNAI 4529, 

Springer, pp.295-306, 2007. 

[21] Y. Yoshida, “Perception-based estimations of fuzzy random variables: 
Linearity and convexity,” International Journal of Uncertainty, Fuzziness and 

Knowledge-Based Systems, vol.16, suppl., pp.71-87, 2008.  
[22] Y. Yoshida, “An estimation model of value-at-risk portfolio under 

uncertainty,” Fuzzy Sets and Systems, vol.160, pp.3250-3262, 2009.  

[23] Y. Yoshida, “Risk analysis of portfolios under uncertainty: Minimizing 
average rates of falling,” Journal of Advanced Computational Intelligence and 

Intelligent Informatics, vol. 15, pp.56-62, 2011. 

[24] Y. Yoshida, “Dynamic fuzzy asset management for worst scenarios with 
average value-at-risks,” Proceedings of CiSt 2018 (2nd IEEE OMCS), IEEE 

press, Marakech in Morocco, pp.437-442, Oct. 2018. 

[25] L. A. Zadeh, “Fuzzy sets,” Inform. and Control, vol.8, pp.338-353, 1965.  
 

 

 

Yuji Yoshida was born in Kitakyushu, Japan in 1955. He 

graduated from the Division of Science, Graduate School, 

Kyushu University, and he received the Doctor of Science (the 

major field is Mathematics) from Kyushu University in 1993. 

He has been a full professor at the University of Kitakyushu 

since 1996. His major theme is decision-making under 

uncertainty containing randomness and fuzziness. For example, 

the ranking of fuzzy numbers and fuzzy sets, fuzzy and 

stochastic systems with fuzzy relations and matrices, and so on. 

The applications of his theoretical research are management 

science and financial engineering. He has written more than 

one hundred papers in major academic journals and in books 

regarding these fields, and he has given a lot of presentations in 

international conferences. He is a member of SOFT, the 

Operations Research Society of Japan, the Mathematical 

Society of Japan and so on. He was also an area editor the 

journals ‘International Journal of Uncertainty, Fuzziness and 

Knowledge-Based Systems’ and ‘International Journal of 

Knowledge-Based Intelligent Engineering Systems’. 

    

    

 

International Journal of Information Science & Technology – iJIST, ISSN :  2550-5114
                                                                                                                Vol.3 No.3, 2019

http://innove.org/ijist/ 45 




