An Improved SPICE Model for the Study of Electro-thermal Static Behavior for two New Generations of SiC MOSFET

By WADIA JOUHA, Pascal Dherbécourt, Ahmed El Oualkadi, Eric Joubert, Mohamed Masmoudi

Abstract


This paper aims to model the static behavior of two generations of Silicon carbide Metal Oxide Semiconductor Field Effect Transistors (SiC-MOSFETs) subjected to temperature and input voltage variations. The description of the studied device, its electro-thermal characterizations and the comparison of two generations of SiC-MOSFETs are presented. The SPICE model provided by the constructor is studied. The comparison between the simulation results of the SPICE model and measurements reveals limitations in terms of temperature behavior and electrical effects. In order to overcome these limitations, a compact model is used. This model accurately describes the static behavior of two generations of SiC-MOSFETs. The threshold voltage extracted from the compact model is exploited to analyze the physical behavior and to compare the performance of two generations of SiC-MOSFETs.

Full Text:

PDF

References


D. Nakamura, I. Gunjishima, S. Yamaguchi, T. Ito, A. Okamoto, H. Kondo, S. Onda and K. Takatori, "Ultrahigh-quality silicon carbide single crystals", Nature, Vol 430, pp 1009–1012, 2004.

F. Bjork, M. Treu, J. Hilsenbeck, M. A. Kutschak, D. Domes, and R. Rupp, “1200V SiC JFET in Cascode Light Configuration: Comparison versus Si and SiC Based Switches”. Materials Science Forum, vol. 679-680, Mar. 2011.

J. S. Glaser, J. J. Nasadoski, P. A. Losee, A. S. Kashyap, K. S. Matocha, J. L. Garret, L. D. Stevanovic, “Direct Comparison of Silicon and Silicon Cabride Power Transistors in High-Frequency Hard-Switched Applications”, in Applied Power Electronics Conference and Exposition, Twenty-Sixth Annual IEEE, 2012.

J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás and J. Rebollo, "A Survey of Wide Bandgap Power Semiconductor Devices," in IEEE Transactions on Power Electronics, vol. 29, no. 5, pp. 2155-2163, 2014.

A.I. Maswood, P. H. Raj, P.L.A. Vu, “Efficiency of Silicon Carbide Based Power Inverters Analytical Results”, Developments in Renewable Energy Technology (ICDRET), IEEE, 2012.

V. Pala, E. V. Brunt, L. Cheng, C. J. Scozzie, “10 kV and 15 kV Silicon Carbide Power MOSFETs for Next-Generation Energy Conversion and Transmission Systems”, European Union, 2014.

R. Kaplar, M. J. Marinella, S. DasGupta, M. A. Smith, S. Atcitty, M. Sun, and T. Palacios, “Characterization and reliability of SiC- and GaN based power transistors for renewable energy applications”, in Energy tech, 2012 IEEE, pp. 1–6, 2012.

L. Yu, G. Dunne, K. Matocha, K. Cheung, J. Suehle, and K.Sheng, “Reliability issues of SiC MOSFETs: A technology for high temperature environments”, Device and Materials Reliability, IEEE Transactions on, vol. 10, no. 4, pp. 418–426, 2010.

Y. Cui, M. Chinthavali and L. M. Tolbert, "Temperature dependent Pspice model of silicon carbide power MOSFET," 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, 2012, pp. 1698-1704.

J. Jang, T. Arnborg, Z. Yu, R. W. Dutton. “Circuit Model for Power LDMOS including Quasi-Saturation”, Proc. SISPAD,1999, pp.15-18.

J. Victory, C. C. McAndrew, R. Thoma, K. Joardar, M. Kniffin, S. Merchant, D. Moncoqut. “A Physically-Based Compact Model for LDMOS Transistors“, Proc. SISPAD, 1998, pp. 271-274.

S. Potbhare, N. Goldsman, A. Lelis, J. M. McGarrity, F. B. McLean, and D. Habersat, “A physical model of high temperature 4 H-SiC MOSFETs”, IEEE Trans. Electron Devices, vol. 55, no. 8, pp. 2029–2039, 2008.

M. Hasanuzzanman, S. K. Islam, and L. M. Tolbert, “Design, modeling and characterization of power MOSFET in 4 H-SiC for extreme environment applications”, Proc. Government Microcircuit Appl. Critical Technol. Conf., pp. 449–452, 2005.

C2M0280120D constructor model: http://go.wolfspeed.com/all-models.

Cree Inc. C2M0280120D SiC MOSFET datasheet

www.wolfspeed.com/media/downloads/171/C2M0280120D.pdf

Cree Inc. C3M0280090D SiC MOSFET datasheet

www.wolfspeed.com/media/downloads/825/C3M0280090D.pdf

D.Grider, “Recent Advances in 900 V to 10 kV SiC MOSFET Technology”, Wolfspeed, a Cree Company, 2015.

B.J. Baliga (2008), « Fundamentals of Power Semiconductor Devices», Ed. New York Springer.

Z. Bowen, Z. Xiaoling, X. Wenwen, S. Shuojie, and X. Xuesong, “The investigation of the zero temperature coefficient point of power MOSFET”, Journal of Semiconductors , Vol. 37, No. 6, 2016.

Z. Chen, D. Boroyevich, R. Burgos and F. Wang, “Characterization and Modeling of 1.2 kV, 20 A SiC MOSFETs”, Energy Conversion Congress and Exposition, IEEE, pp. 1480-1487, 2009.

W. Jouha, P.Dherbecourt, E.Joubert, A. El Oualkadi, “ Static Behavior Analysis of Silicon Carbide Power MOSFET for Temperature Variations” , 2nd International Conference on Electrical and Information Technologies ICEIT, 2016.

W. Jouha, A. E. Oualkadi, P. Dherbécourt, E. Joubert and M. Masmoudi, "Silicon Carbide Power MOSFET Model: An Accurate Parameter Extraction Method Based on the Levenberg–Marquardt Algorithm," in IEEE Transactions on Power Electronics, vol. 33, no. 11, pp. 9130-9133, Nov. 2018.

K . Levenberg, “A method for the solution of certain nonlinear problems in least squares”. Quart. Appl. Math. 2, 1944. 164-168.

D. W. Marquardt, “An algorithm for least squares estimation of nonlinear parameters”, SIAM J. Appl. Math. 11, 1963. 431-441.

R. Ouaida, “Vieillissement et mécanismes de dégradation sur des composants de puissance en carbure de silicium (sic) pour des applications haute température”, thèse de (INSA) de Lyon, 2014.