

TEMANIS: Towards an Environment for Modeling
Adaptation Needs for Information Systems

1Magagi Ali Bachir, 1Ismail Jellouli, 2Said El Garouani, 1Souad Amjad
1Department of computer Science, Abdelmalek Essadi University,Tetuan,Maroc
2Department of computer Science, Sidi Mohamed Ben Abdellah University, Fez

*Corresponding Author: bmagagi@uae.ac.ma

Abstract— In this paper we present a tool for expressing the

adaptation needs of information systems. The main objective is

to provide a modeling environment allowing the integration of

all the elements required for adaptation. We first make a

presentation of the state of the art in the field. We define a UML

profile applicable to the activity diagram. This activity diagram

expresses adaptation needs. Following, we outline the structure

of our solution and the way it works. Our solution is composed

of three parts, each one representing a phase of the adaptation

process. At the end, an example scenario shows a possible

application of our solution.

Keywords—Model-Driven-Engineering, Self-Adaptive

System, Model Transformation, Automatic Code

Generation, Model-Driven-Approach

I. INTRODUCTION

Adaptation is a crucial need in almost all areas of life. Any
serious system must include aspects of adaptation taking
account of its environment. This aspect can be related to the
technical structure of the system or related to its internal
behavior. Adaptation guarantees a high level of autonomy in
terms of maintenance and error management. Human
intervention on the system therefore becomes rare or absent.
Nowadays, there is no universally recognized method for
designing and building this type of systems. Several
researchers have been interested in this problem and have
proposed new solutions. Although very interesting, these
solutions do not seem to cover all aspects raised by this
problem. Some limit themselves to solving a specific point of
the problem, others set limits on the application domain to
optimize the management of a specific domain, others provide
tools specific to a single technology. This leaves the door open
to all other possible solutions. These solutions are generally
inspired by the behavior of existing systems, whether natural
like the biological system, or artificial like some sophisticated
technical systems.

On the other hand, our study of the state of the art shows
that the standard language UML [1] does not allow a precise
design that supports adaptation; all technical specifications
related to adaptation must be considered and formalized by the
designer, which is costly in terms of time. Thus most of the
approaches we have explored aim to provide tools specializing
the UML language [1] so as to make it more compliant with
the domain or with the technology. That is why we formalize
our approach in the form of a domain-specific modeling
environment to facilitate the design of adaptive information
systems.

Following the previous consideration, the solution we
propose is based on the MAPE-K (Monitor-Analyze-Plan-
Execute-Knowledge) [2] control loop which is a well-
established functional architecture for adaptive systems.
Structurally, the system implementing the MAPE-K, adopts
the Model-View-Controller (MVC) architectural pattern. The
dynamic response of the proposed system is insured by the
successive replacements of components. This principle

consists of replacing degraded components by newly
generated ones.

This methodology aims to support the "Generic Model for
Adaptive Systems Realization"[3] and "Domain Specific
Model Driven Approach for Adaptive Systems"[4], in terms
of adaptation needs expression. Other methodologies can also
take advantage of it to help express adaptation needs of system
they are designing.

The remainder of this document is structured as follows:

In section 2 we present a state of the art in which we
outline the field of study and its techniques. In section 3 we
present an application case scenario and conduct a comparison
between its resolution with the coding method and its
resolution with model-driven engineering. We present the
definition of the tools to configure the environment, in section
4. Then in section 5, we present the approach and how it
works. Then in section 6 we present an application of the
approach on the example of the field of application presented
in section 3. At the end section 7, in which we present the
synthesis of the results and the future work envisaged, comes
to conclude the document.

II. STATE OF THE ART

We call an adaptive system a system capable of acting on
itself to provide responses to environmental malfunctions.
These modifications may consist of changing its configuration
or structure.

The adaptive system is a system capable of evaluating its
behavior, by itself, and of modifying it when the desired
performances are not reached[5].

Depending on their perception of the environment,
adaptive systems are able to change their behavior or their
structures to respond to the hazards that have arisen[6].

It is pointed out by[7] that what defines an adaptive system
is its ability to react to environmental changes and to its
internal logic by itself.

 Adaptation therefore amounts to making any system
capable of responding to the operating problems (internal or
related to its functional environment) that it encounters.

However, realizing this type of system in an efficient and
predictable manner is a great engineering challenge. The
prefix "auto" indicates that systems autonomously decide how
to adapt or organize themselves to adapt to changes in their
environments. While a self-adapting system may be able to
operate without any human intervention, guidance in the form
of higher level targets is useful and achieved in many
systems[8].

This field is attracting the attention of many researchers,
each trying to make their own contribution to advancing the
field. As a result, we have a large number of approaches, each
with its strengths and weaknesses. We propose, for a better
reading, to explore some of the approaches in this part.

International Journal of Information Science & Technology – iJIST, ISSN : 2550-5114
 Vol. 6 - No. 2 - May 2022

http://innove.org/ijist/ 30

Originally the majority of adaptive systems are based on the
operation of the control loop. The latter is the central element
in the self-adaptation of a system. It gives the system the
ability to constantly observe its environment in order to be
aware of the change in the latter. Based on the control loop the
system analyzes the situation of its environment after
acquisition and takes a decision to provide the appropriate
response to the environmental changes that have occurred. It
is indicated by that the feedback loops (control loops) provide
the generic self-adaptation mechanism [8].

But with the evolution of this kind of systems several sources

of behavioral inspiration and various technical bases have

emerged. However, they are not always used separately, they

can sometimes be combined together to define approaches to

adapting systems. The biological system because of its

complex functioning has inspired many researchers in their

work when it comes to the realization of self-adaptive

systems[8].

 Architecture-based engineering, in this case all

aspects of the approach are defined by extensions of

a well-defined technical architecture[9].

 Component-based engineering, it ensures that the

system gradually replaces degraded software

components with new ones in response to

environmental hazards [10].

 Service-oriented engineering, applicable to the

service-based system, it leverages the services to

ensure the adaptation of the system [11].

 Model-driven engineering, which puts the model at

the heart of the entire software process. That is, the

adaptation rests entirely on the model in the whole

process of realizing the system. In this technique the

initial models will be gradually modified using the

transformation of the models to produce a system.

A. Model transformation

This is a crucial element in model-driven engineering because

it is through which the process of building the system from

model takes place. A source model will have to go through

several levels of transformation[12] in order to produce a

system.

Figure 1:Tranformation concept view

Model transformation is the process of converting a source

model into a desired destination model. It can relate to models

of the same types or different types.

Transformations are indispensable techniques in software

engineering since the beginning of high-level programming

languages which are compiled into assembler[13]. Similarly,

model transformations are therefore crucial in Model-Driven-

Engineering(MDE)[14] and come in different forms to

perform different tasks [15]. Transformation is a program that

receives a minimum of one input model to provide an output

model.

The transformation of models can be of several types so we

can distinguish the Model-To-Model transformation from the

transformation Model-To-Text, as widely discussed in [16].

Model-To-Model transformation: this is the type of

transformation that encompasses the generality of model

transformation because it allows to transform any source

model into any destination model.

Model-To-Text transformation: this type of transformation is

the most specific because it allows you to switch from a

source model to a destination model which must necessarily

be of text type, this is the case for code generation.

A transformation is called exogenous when the source and

destination models are based on different metamodels. The

following figure express that.

Figure 2:exogenous transformation

 A transformation is called endogenous when the source and

destination models respond to the same metamodel, like

express in the following figure.

Figure 3:endogenous transformation

To perform model transformations, it is essential to use a

model transformation language. There is a variety of model

transformation languages, each presenting an advantage over

the others depending on the point of view. Some languages

are wider because it offers different types of transformation,

so it can be used to make a Model-To-Model or Model-To-

Text transformation, most languages are of this type. This is

notably the case with Atlas Transformation Language [17] or

even Query view Transformation[18]. Some are more

restricted to performing Model-To-Text type

transformations, for example Acceleo transformation

language[19].

B. Modeling language and extension of UML

For better modeling specific to a domain, it is essential to

define a language which is specific to it. This language thus

makes it possible to have precisely all the elements of the

field well represented. To do these, the two following

solutions are possible:

 The definition of a new modeling language: this

consists of defining new models and a meta-model

ensuring the conformity of the models. It will also

be necessary to define the abstract and concrete

International Journal of Information Science & Technology – iJIST, ISSN : 2550-5114
 Vol. 6 - No. 2 - May 2022

http://innove.org/ijist/ 31

syntax of the language for its use. The abstract

syntax describes the set of valid models that can be

used to model any system. It also describes the way

in which the models are structured [16] and the

different interactions that can exist between them.

Concrete syntax then describes how models are

presented graphically or verbatim in the modeling

editor. It also presents the semantics of models. In

other words, it specifies the meaning of each pattern

in the design. This solution is very rigorous and time

consuming because it consists in redefining all the

foundations of a modeling language as a redefinition

of UML.

 The definition of a UML profile: the profile is a

domain-specific interpretation of UML, and can

therefore be considered as domain-specific

languages defined by extending or restricting UML.

UML profiles are presented as packages of related

and consistent extensibility elements defined based

on UML and using elements like stereotypes, tagged

values. Stereotypes allow you to refine meta-classes

by defining additional semantics to the element

represented by the meta-class. The marked values

form a tag-value pair attachable to a stereotype as an

attribute. They allow the designer to specify

additional information useful or necessary to

implement, transform or run the model[16].

We can list the following examples: the EJB profile

for describing the basic concepts of Enterprise Java

Beans (EJB);the UMLTesting profile allowing to

support the design, visualization, specification,

analysis, construction and documentation of the

elements participating in the tests; the SysML

allowing modeling specific to the field of systems;

Or SoaML, which is defined as a service-oriented

architecture modeling language.

C. Domain specific modeling language

UML is generally the language used for modeling

information systems. Nevertheless, it appears to be a very

general language for the design of certain specific domains.

It requires details to take into account the elements of the

domain in the modeling.

Hence the need to implement domain-specific languages

depending on the industry or the type of system to be

designed. It consists in specifying generic models

representing components specific to the domain. In this way

we can accurately represent each component of the system

relating to a given sector. Thus, the user can have the tools to

carry out a coherent design in his field.

A domain-specific modeling language (DSML) is any

language designed specifically for a specific domain, context,

or company, to make it easier for people who need to describe

things in that domain [16].

To define a domain-specific language, one generally relies on

existing components in UML that can be reused in the target

domain. On top of these UML components, domain-specific

components are added through a UML profile. The following

figure (figure 4) gives an overview which shows the

correspondence between UML language and domain specific

language.

Figure 4:Correspondence between UML, UML profile and DSML

D. Previous approaches explored

We will give a non-exhaustive overview of the different

approaches that we had to explore. We limit ourselves to

model-driven approaches[20] since they go in the same

direction as ours. We can thus present them as follows:

AdpatCase[21] which is a model-driven approach that is

based on the structure of the control loop and the behavior of

the uml useCase diagram to ensure the adaptation of systems;

it allows expressing the adaptation needs of the system to

design without taking charge of the implementation part.

ActiveForms[22] is another approach that represents a

valuable contribution to the field of systems adaptation. It is

a model-based approach that consists on the continuous

verification of models. When the service provided by the

system is interrupted or is no longer optimal, the models are

gradually upgraded in order to stabilize the system.

Model-based Simulation at Runtime for self-adaptive

Systems[23] is a structure-to-module approach in adaptation

decision making. To ensure efficient decision-making, it

offers a simulation of the execution of each model to identify

its different states.

FESAS: Towards a Framework for Engineering Self-

Adaptive Systems [24] : This is a Framework that provides

tools for the design of systems and transforms the source

model into a system model, using a reference architecture for

the adaptive system and a library with reusable components

for the adaptation logic.

In the design phase, requirements, objectives and constraints

are captured using a requirements engineering approach

suited to adaptive systems development [25]. The design

model can then be automatically converted to a runtime

system model. Work at the design level is how to help system

developers specify requirements and how to translate them

into requirements for adaptation logic. These adaptation

requirements are first order entities[26] that are present

throughout the system life cycle. As with any approach that

aims to provide a serious logic of adaptation, this one is based

on the MAPE-K loop by opting for a particular level of

decentralization [7]. This Framework is completed by its tool

which is an integrated development environment[27], which

is provided a little later after the approach. It is based on the

Eclipse editor and technologies like the JSON format. It

offers two tools: the FESAS development tool and the

FESAS design tool. These tools represent the separation of

responsibilities in the development of Adaptive System using

FESAS in roles of developer and designer of system. The

system developer uses the FESAS development tool to

develop the functional logic code, which is then stored in the

FESAS repository.

The following table gives us an overall summary of the

approaches.

International Journal of Information Science & Technology – iJIST, ISSN : 2550-5114
 Vol. 6 - No. 2 - May 2022

http://innove.org/ijist/ 32

TABLE I:Table summarizing the descriptions of the approaches

Name Type Based on Application

domain

Adapt Case Modeling

language

MAPE-K/

UML Use

case

General

Active

Forms

Methodology Component

replacement

General

Model-

based

Simulation

at Runtime

for self-

adaptive

Systems

Methodology MAPE-K General

FESAS Framework MAPE-

K/Model-

Driven

Pervasive

system

FESAS IDE Tools MAPE-

K/Model-

Driven

Pervasive

system

All these methods presented seem to have a scope affecting

each aspect of system adaptation, starting from the definition

of needs to the management of adaptation. They consist in

presenting simulations of the behavior of the models in the

process of adaptation, which does not offer a real platform for

the designer. The methodology that we propose consists in

offering more means of communication specific to a domain

(that of self-adaptation here) to formalize the expression of the

adaptation needs of the system. Thus from these expressions

the management of the adaptation of the system can be made

independently of our methodology.

III. SCENARIO

In this section, we present a simple scenario to show how
a model-based approach can ease the implementation of
adaptation in comparison with a code-based one. Very often,
we try to access a page on a website without success. The
system must therefore find the most effective alternative
answer. The solution to this kind of problem is to consider
alternatives explicitly while building the system.

In our case, the aim is to implement a MAPE-K loop.
Doing this following the traditional technique of software
development leaves the developer with too much freedom
therefore all the procedure is carried out on the lines of code.
Whenever a change occurs, it will be necessary to return to the
code to mirror this change. This approach is costly in terms of
time and maintenance.

In contrast, model-driven engineering significantly
reduces this task and improves the quality and maintainability
of the solution provided.

Figure 5 shows the different phases of the traditional
method for building information systems.

Figure 5:Traditional process

Figure 6 shows the phases followed in model-driven
engineering to build information systems.

Figure 6:The method of model-driven engineering

In the scenario, we simulate the adaptation mechanism for a
product management web site. If the user requests yields to
the selection of a non-existing web page, an “ordinary” system
will return a kind of 404 error page as shown in figure 7.

Figure 7:Traditional response

In our case we will try to solve the problem differently.

The system has to return a page similar to the one requested.
Figure 8 shows the behavior aimed by our solution.

International Journal of Information Science & Technology – iJIST, ISSN : 2550-5114
 Vol. 6 - No. 2 - May 2022

http://innove.org/ijist/ 33

Figure 8:Response according to our vision

IV. ENVIRONMENT SETUP

In this section, we present the implementation of the different

technical tools allowing the use of the approach. We thus

present the way in which the UML profile, personalizing the

components involved in the system adaptation process, is

defined. The semantics of each component participating in

the UML profile is explained here.

A. Profile definition

To configure our modeling environment, we suggest defining

a UML profile. The profile is a mechanism which makes it

possible to specialize UML by redefining its syntax. Each

element is redefined through a stereotype which makes it

possible to enrich its semantics by adding other properties

and / or other behaviors.

Our profile allows us to have models to represent components

specific to the field of adaptive information systems. Each of

the components involved in adaptation management is

represented by a stereotype through which we give it a new

use.

The profile that we define is applied on the activity diagram

to define the adaptation needs of the system to be designed.

The needs are first defined using the activity diagram, then

we apply the profile to give each component its properties.

The defined stereotype and their descriptions are presented

on the following table.

TABLE II:The Stereotype descriptions

Type Descriptions

Basic
It is used to define a simple element

which does not require much details.

Listening

It is used to determine a gateway for

listening and superficial information

processing. it has a name and an action

which indicates its real functioning.

Temporary

These are the models generated during

the process when certain conditions are

met. They have a limited lifespan.

Archive
It is used to archive all the adaptation

responses already proposed.

System

It is the model which allows the

representation of the Information System

without detailing.

Selector

It is the model which takes care of the

selection of the most appropriate

component, among those generated, to

ensure the adaptation.

Main

it is a model which performs, if

necessary, the generation of new

components intended to replace the

defective ones.

Manager

It is the model used to process the

information contained in the event

generated following the change in the

system environment. It allows you to

decide whether there is an old reusable

solution or whether to claim a new one.

Alert

It is used to prepare a request in the form

of an alert which will be distributed to

another model.

Repeat
It represents the repetition of an action

according to specific conditions.

Generation
It is used to designate the action for

generating a new model.

Generic link
It is used to represent a link that is not

explicitly defined between two models.

These are classes that inherit from more general meta-classes

to take advantage of their behavior and specialize in an

application domain. A meta-class represents a class which

instances are also classes. In other words, it represents a class

that describes other classes. Figure 9 shows the global profile

diagram where we can see all the stereotypes, their categories

and their links with the meta-classes.

After having defined the stereotypes, we define a special

theme in the profile to distinguish the view of each

stereotype.

In the definition of this theme, we used the cascade style sheet

(CSS) language. The CSS language has been integrated into

the papyrus platform (papyrus is a version of eclipse extended

by modeling tools) with a very precise model-oriented

syntax. In its basic form, CSS allows to act on an element

using its class or identifier, with the profile in papyrus it

allows to act on an element through its stereotype; the

properties are also customized.

Figure 10 shows a snippet of the theme's code, where it is

clear to distinguish the various syntaxes and properties

offered by papyrus.

International Journal of Information Science & Technology – iJIST, ISSN : 2550-5114
 Vol. 6 - No. 2 - May 2022

http://innove.org/ijist/ 34

Figure 9:The profile diagram

Figure 10:Snippet of the theme's code

B. Structure of the approach

The good organization of the MVC concept makes it a good

source of inspiration for a well-structured approach. Its

technical maturity and the conclusive interactions between its

different parts constitute a base for a good organization of all

techniques that relies on it. Its structure, which is made up of

three parts (Model View Controller), allows operations to be

grouped into block according to their nature. So, we take

advantage of this organization of the MVC to structure our

approach. It is therefore divided into three parts (shown in

figure 11) as follows: System, Controller, Response process.

We will explain these different parts in detail later in this

document. Each part of the approach allows the expression of

adaptation aspects for the system section it represents.

Figure 11:Correspondence between MVC and our approach

The part called system allows to express in detail the

components of the system and its environment. The controller

performs the analysis of changes occurred in the system

environment and decides on the action to be taken. The

response process describes how the response to a malfunction

will be prepared. All these three parts will be presented in

more detail in the following sections.

V. THE CONCRETE APPROACH

In this section we expose the different parts of our approach

by explaining the parts responsible for the expression of each

International Journal of Information Science & Technology – iJIST, ISSN : 2550-5114
 Vol. 6 - No. 2 - May 2022

http://innove.org/ijist/ 35

phase of adaptation. These different parts are those inspired

from the MVC structure as explained in the previous part

(figure 11).

This approach is a method for modeling and specifying the

adaptation needs of a given information system. It makes it

possible to show clearly the different models, their role and

their interactions with others. Each adaptation phase is

managed in a well-defined part of the architecture of the

approach. It is based on several types of models to provide

the tools necessary for modeling the adaptation phenomenon.

It allows a clear expression of all the phases of adaptation

spread over the three design areas. The system part represents

everything that is functional, the response process part is the

zone where the adaptation decision is made and the controller

is the zone where an analysis of state's change of the system

made. The main purpose of this approach is to describe the

phenomenon of adaptation for a system under design. It is

based on the generation and replacement of system

components. When there is an environmental hazard, new

solution components are generated to replace the old ones

which are affected by the change that has occurred.

A. System

The system part represents the global environment of the self-

adapting system. It also presents all the links between the

various elements of the environment. Each element of the

environment has a well-defined and essential role in the

approach. Here we will explain the meaning and the function

of each of the model elements.

In this part we are able to represent by models the following

elements:

System: A Basic type model to represent the adaptive system

without any details.

Data: A Basic type model to represents the mass of data

processed by the adaptive system.

Component: A Basic type model used to represent the

various structural components that are part of the adaptive

system architecture. It is the minimalist element (like an

entity in UML)[1] of the adaptive system's internal

architecture.

Event: A Temporal type model to express a change occurred

in the system environment, so a decision needs to be made.

Operation of the system part:

The system environment representative area works in a very

consistent and synchronized manner. A specific model

constantly monitors all the components and the system data

flows. When a malfunction affecting the system occurs in the

environment, an event as Temporal model will be generated.

All details relative to the malfunction are contained into the

event. As soon as generated, the Event model is read by the

devices present in the controller part.

B. Controller

This area triggers the adaptation response process following

a malfunction in the system environment. The process begins

following the generation of an event by the system part.

In this part, we are able to represent by models the following

elements:

Listener: a model that constantly listens to the system

environment to monitor its state. It reacts to the generation of

an event in the system environment that expresses a

malfunction in the adaptive system.

Archive: it represents a container of the old proposed

adaptation responses.

Manager: this is a model intended to manage the decision in

the controller following the analysis of an event carried out

by Listener. It decides if an old solution is enough for the

problem or a new one is necessary. If a new solution is

necessary, the Manager triggers a new Request.

Operation of the controller part:

The controller is constantly listening to the system

environment through the Listener model. And whenever

there is no change in the system environment the listening

action gets stuck through. When an event is generated, the

Listener reads and analyzes it. Once the change's cause has

been determined, the controller decides through the Manager

model the action to be taken. Either the choice of an old

satisfactory answer through the Old model repository or

whether a new response must be requested. In the case that a

new response is required, it is made through a new request

send to the Response process part.

C. Response process

It is in this part that the response for adaptation is determined.

In this part we are able to represent by models the following

elements:

Main: A model responsible for the generation of the new

components that will be used to replace the old defective ones

in order to ensure the adaptation of the system.

Selector: A model that allows selecting between the

generated components in order to designate the most

appropriate to be used.

Component: A Temporal type model to be chosen to serve

as a spare part to replace an old defective component.

Operation of the response process part:

It is a crucial part in this approach because this is where are

determined the responses to the malfunctions occurred in the

system environment. It ensures the continuous verification of

a new response request. When a new response request is

sensed, the Main model analyzes it and triggers the

component generation process. Several components are

generated related to the nature of the response request. These

generated components must technically be similar to the

corrupted components in the system but with additional

properties. These components will then be read by the

Selector model which will analyze them and make a selection

to determine the most suitable to be use.

VI. VALIDATION

In this part we concretely apply the tools defined in this

approach. We apply it to our first example of the product

management application presented in the section scenario.

We explicitly present how all three parts can be expressed to

model the scenario.

We carry out this validation by a progressive presentation of

three parts explained earlier in this document.

A. Modeling of the application web environment(System)

This part is used to represent the system environment, it

represents the web application and its various structural

International Journal of Information Science & Technology – iJIST, ISSN : 2550-5114
 Vol. 6 - No. 2 - May 2022

http://innove.org/ijist/ 36

components (pages), the processed data (data), as well as the

structure (state) which processes page requests made by

users. When the page request is not satisfied, an event

carrying a message will be created to inform the controller

that a request has failed (a malfunction has therefore

occurred).

Since our profile is based on UML Activity diagram, we will

first make the needs expression using an activity diagram and

then apply the profile. We will define the remaining parts

(controller and Response process) using the same procedure.

The following figure (figure 12) shows the initial Activity

diagram for the system part.

Figure 12:Description of the failure to return a page using Activity Diagramme

The following figure (figure 13) then shows the diagram after we applied the profile to it. We can clearly distinguish all the
models and the links between them.

Figure 13:Description of the failure to return a page after applying the UML profile

B. Modeling of the anomaly detection(Controller)

The devices in this part will constantly try to read an event
created by the system environment by performing tests. When
it detects a new event, it will analyze it using the ad hoc model
(Analyzer). Analyze will first explore the archive of existing
solutions (previously used) through the component (Archive),

if it finds an old page corresponding to the problem it will
adopt it otherwise it will trigger the search for a new solution.
To request a new response, the controller will produce an alert
component to inform the Response process part that a new
page needs to be created. All the expressions of the controller
part are clearly presented on the following figure (figure 14).

International Journal of Information Science & Technology – iJIST, ISSN : 2550-5114
 Vol. 6 - No. 2 - May 2022

http://innove.org/ijist/ 37

Figure 14:Solution request

C. Modeling of a proposed solution(Response process)

The response process always listens for a page need. When it
reads a new page; a request sent from the controller part, the
Main starts and generates multiple pages similar to the one
whose rendering is impossible. All the generated pages will

go through the selector which will make the decision on the
best page to be sent to the user. This way the user will always
get a satisfying answer when he requests a page. The
following figure (figure 15) shows the process of generation
et and the selection of the Response process part.

Figure 15:Process to provide response

VII. CONCLUSION AND FUTURE WORK

We headed in this work towards setting up a modeling
environment. We explicitly presented the goal we wanted to
achieve in the work. In order to specialize our environment
and take into account all the components involved in
managing the adaptation of a system, we have defined a UML
profile. This profile is applicable to the UML language
activity diagram. We have shown how to express the
adaptation needs with the UML activity diagram to which we
apply the profile to have the modeling. However, a real
modeling environment must provide directly usable tools,

generally in drag and drop, to represent the components of the
domain. In addition, for its completeness, a modeling
environment must provide a mechanism for automatic or
semi-automatic code generation in the most widely used
languages in the field. Therefore, it is clear that further work
is needed to complete this modeling environment.

We thus aim, in the future, to extract directly usable models,
embedded in the environment, in order to be able to represent
each element contributing to adaptation management. We will
therefore have an environment with elements graphically
represented and ready to be used. In addition to this we

International Journal of Information Science & Technology – iJIST, ISSN : 2550-5114
 Vol. 6 - No. 2 - May 2022

http://innove.org/ijist/ 38

propose to integrate a code generation mechanism in the
languages most used in the realization of adaptive information
systems (JAVA, C # ...). We will be based on the techniques
of transformation of the models; thus, we will have a complete
environment for the modeling of adaptive systems.

REFERENCES

[1] R. S. Bashir, S. P. Lee, S. U. R. Khan, V. Chang, and S. Farid,

“UML models consistency management: Guidelines for software

quality manager,” Int. J. Inf. Manage., vol. 36, no. 6, pp. 883–899,

2016.

[2] C. Krupitzer, T. Temizer, T. Prantl, and C. Raibulet, “An overview

of design patterns for self-adaptive systems in the context of the

internet of things,” IEEE Access, vol. 8, no. i, pp. 187384–187399,

2020.

[3] M. A. Bachir, J. Ismail, E. G. Said, and A. Souad, “Generic Model

for Adaptive Systems Realization,” Int. J. Organ. Collect. Intell.,

vol. 12, no. 2, pp. 1–17, 2021.

[4] M. A. Bachir, J. Ismail, E. G. Said, and A. Souad, “Domain

Specific Model Driven Approach for Adaptive Systems,” Int. J.

Adv. Trends Comput. Sci. Eng., vol. 10, no. 3, pp. 1705–1710,

2021.

[5] F. D. Macías-Escrivá, R. Haber, R. Del Toro, and V. Hernandez,

“Self-adaptive systems: A survey of current approaches, research

challenges and applications,” Expert Syst. Appl., vol. 40, no. 18,

pp. 7267–7279, 2013.

[6] R. de Lemos et al., “Software engineering for self-adaptive

systems: research challenges in the provision of assurances,” Lect.

Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell.

Lect. Notes Bioinformatics), vol. 9640 LNCS, no. December 2013,

pp. 3–30, 2017.

[7] D. Weyns et al., “On patterns for decentralized control in self-

adaptive systems,” Lect. Notes Comput. Sci. (including Subser.

Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7475

LNCS, pp. 76–107, 2013.

[8] Y. Brun et al., “Engineering self-adaptive systems through

feedback loops,” Lect. Notes Comput. Sci. (including Subser. Lect.

Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 5525 LNCS,

pp. 48–70, 2009.

[9] P. Oreizy et al., “An architecture-based approach to self-adaptive

software,” IEEE Intell. Syst. Their Appl., vol. 14, no. 3, pp. 54–62,

1999.

[10] T. Lenton and P. Valdes, “Genie,” PIK Rep., no. 98, pp. 19–21,

2005.

[11] V. Cardellini, E. Casalicchio, and V. Grassi, “MOSES : a

Framework for QoS Driven Runtime Adaptation of Service-

oriented Systems,” no. September, 2012.

[12] N. Gulfam Ahmad, Hafiz Tahir, Iqra Naeem Abbas,

“Implementation of Novel Approaches in Bidirectional Model

Transformation: a Systematic Literature Review,” Azerbaijan J.

High Perform. Comput., vol. 4, no. 1, pp. 91–112, 2021.

[13] K. Czarnecki and S. Helsen, “Feature-based survey of model

transformation approaches,” IBM Syst. J., vol. 45, no. 3, pp. 621–

645, 2006.

[14] M. A. Mohamed, G. Kardas, and M. Challenger, “A Systematic

Literature Review on Model-driven Engineering for Cyber-

Physical Systems,” 2021.

[15] T. Mens, P. Van Gorp, D. Varró, and G. Karsai, “Applying a model

transformation taxonomy to graph transformation technology,”

Electron. Notes Theor. Comput. Sci., vol. 152, no. 1–2, pp. 143–

159, 2006.

[16] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software

Engineering in Practice, vol. 1, no. 1. 2012.

[17] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model

transformation tool,” Sci. Comput. Program., vol. 72, no. 1–2, pp.

31–39, 2008.

[18] Object Management Group (OMG), “Meta object facility 2.0

Query/View/Transformation,” Final Adopt. Specif., no. January,

pp. 1–230, 2011.

[19] Eclipse, “www.eclipse.org/acceleo/documentation/,” 2021.

[Online]. Available:

https://www.eclipse.org/acceleo/documentation/. [Accessed: 08-

Feb-2021].

[20] F. A. Somogyi and M. Asztalos, “Systematic review of matching

techniques used in model-driven methodologies,” Softw. Syst.

Model., vol. 19, no. 3, pp. 693–720, 2020.

[21] M. Luckey, B. Nagel, C. Gerth, G. Engels, and W. Straße, “Adapt

Cases : Extending Use Cases for Adaptive Systems,” pp. 30–39,

2011.

[22] D. Weyns and M. U. Iftikhar, “ActivFORMS : A Model-Based

Approach to Engineer Self-Adaptive Systems ActivFORMS : A

Model-Based Approach to Engineer,” no. September, 2019.

[23] D. Weyns and M. U. Iftikhar, “Model-based simulation at runtime

for self-adaptive systems,” Proc. - 2016 IEEE Int. Conf. Auton.

Comput. ICAC 2016, pp. 364–373, 2016.

[24] C. Krupitzer, S. Vansyckel, and C. Becker, “FESAS: Towards a

framework for engineering self-Adaptive systems,” Int. Conf. Self-

Adaptive Self-Organizing Syst. SASO, pp. 263–264, 2013.

[25] B. H. C. Cheng, H. Giese, P. Inverardi, and J. Magee, “Software

Engineering for Self-Adaptive Systems,” vol. 5525, no. January,

2009.

[26] N. Bencomo, J. Whittle, P. Sawyer, A. Finkelstein, and E. Letier,

“Requirements reflection: Requirements as runtime entities,”

Proc. - Int. Conf. Softw. Eng., vol. 2, no. June 2014, pp. 199–202,

2010.

[27] C. Krupitzer, F. M. Roth, C. Becker, M. Weckesser, M. Lochau,

and A. Schurr, “FESAS IDE: An integrated development

environment for autonomic computing,” Proc. - 2016 IEEE Int.

Conf. Auton. Comput. ICAC 2016, no. March 2020, pp. 15–24,

2016.

International Journal of Information Science & Technology – iJIST, ISSN : 2550-5114
 Vol. 6 - No. 2 - May 2022

http://innove.org/ijist/ 39

