
  

Abstract—Alcohol is a serious toxic substance that alters brain 

function by interfering with neuron processes in the central 

nervous system, leading to mental and behavioural disorders. 

Alcoholism has serious pathological effects on the liver, immune 

system, brain, and heart. Alcoholism diagnosis is critical not only 

because of the disease’s impact on individuals and society but also 

because of the financial cost to the national health system since 

many people suffer from it around the world. 

Electroencephalogram (EEG) signals of normal and alcohol can be 

classified automatically to diagnose these illnesses, such that this 

work contains a simple and very fast prediction system. The 

method uses a bandpass filter to remove all unused signal 

frequencies, it can be showed in correlation matrices. Therefore, 

the use of machine learning (ML) algorithms in this work make it 

possible to quickly generate prediction models with better 

accuracy values, in addition to the improvement of the algorithmic 

parameters of classifier and bandpass filter using major 

optimizers like Genetic Algorithm (GA) and Harris Hawks 

Optimization (HHO), the elaborate model precision values have 

been increased from 63.9% to 99.95% without the extraction of 

EEG signal characteristics. To minimize the number of the 

electrodes and remained good accuracy values, this work uses the 

Extra-Trees (ET) algorithm, such as with only four electrodes the 

accuracy value remains higher of 99%. A comparison with other 

techniques was performed aiming to validate our approach, and it 

shows great efficiency, simplicity, and instantly. 

Index Terms—Brain-Computer Interface (BCI), 

Electroencephalogram (EEG), Data analysis, Signal processing, 

Feature selection, Machine learning, Optimization. 

I. INTRODUCTION 

Alcoholism or poor alcohol consumption is a common 

neurological disorder that affects about 10% of the world’s 

population [56], the most common negative health effects of 

excessive alcohol consumption are cardiomyopathy, stroke, 

high blood pressure, cirrhosis, and increased cancer risk. Many 

models mark a person as having a change in alcohol dependence 
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is thought to suffer from alcoholism throughout a continuous 

alcohol disorder, on the other hand, Churchill and Farrell [20] 

have also shown that there is a link between alcohol and 

depression [56], alcoholism also undermines the social life of 

people and their people and increases the cost of social 

investment in health care. In this pessimistic situation, male 

alcohol accounts for 7.6% of all deaths among the world’s 

deaths [51, 56], it has a variables variety that affects the central 

and peripheral nervous systems, affecting their function and 

leading to the recoverability of normal brain activity [8, 56]. 

Moreover, alcoholism is considered a neurological disorder 

characterized by excessive alcohol consumption that does not 

control alcohol consumption [24, 45], where the alcoholism 

falls into three categories, light, moderate, and severe 

depending on the pattern and quantity of alcoholism, such as 

the light or moderate drinking can have a health benefits 

variety, including reducing the risk of diabetes and heart 

disease, while excessive drinking can lead to health problems 

variety, including stroke, liver disease, cardiovascular disease, 

cancer, and cirrhosis. According to the world health 

organization (WHO) [45, 65], when alcohol consumption is 

severe, the mortality rate has risen to three million, accounting 

for 5% of the global burden of disease and about two billion 

people drink alcohol, of whom 81.7 million are severely 

poisoned [12, 58, 59], manual screening of EEG signals is 

difficult and often produces inaccurate results [12, 49]. The 

brain-computer interface (BCI) converts the brain’s electrical 

activity into meaningful commands using soft computing 

technology to identify the EEG signals tasks [1, 50, 64] and to 

control a variety of applications and assistive devices, such as 

robotic arms and electric wheelchairs for helping many of 

people with disabilities, this EEG-signals are essentially non-

stationary varying in mental state and brain awakening level [1, 

34, 64]. In addition, EEG-brain records of different human 
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subjects can be used for personal identification using each 

individual’s activities [46, 53, 64]. There are various 

neuroimaging techniques, namely, computed tomography (CT), 

magnetic resonance imaging (MRI), positron emission 

tomography (PET), an electroencephalogram (EEG) signals are 

used to diagnose brain abnormalities such as stroke, epilepsy, 

cancer, Alzheimer’s disease, and alcoholism [14, 17, 45, 49]. 

Neurology assessment is more convenient when calculating the 

power spectrum of alcohol and non-alcoholic brain signals. 

However, the nonlinearity, time domain, or frequency of the 

EEG signals makes domain analysis difficult. Various time-

frequency domain signal processing technologies based on 

Fourier transformation (FFT) allows for obtaining the different 

EEG waves such as Delta, Theta, Alpha, Beta, and Gamma [1, 

12, 15]. To analyze medical data sets, machine learning (ML) 

methods were created. The medical diagnosis is obtained from 

the patient’s medical history. The developed classifier may be 

used to diagnose fresh datasets with greater speed, accuracy, 

and reliability. Because of its high performance, ability to deal 

with missing data, ability to explain decisions, and knowledge 

transparency, the ML system is more useful in solving medical 

diagnosis problems [39, 40]. Different machine learning 

approaches can be used, and the literature reports on a wide 

range of techniques and how they can be used for classification. 

Classifiers based on Gaussian mixture models span from simple 

linear discriminant analysis (LDA) to nonlinear and highly 

sophisticated Gaussian mixture models [6, 55]. Several 

traditional methods, such as LDA [41], Long 2014, support 

vector machines (SVMs) [5, 68], [25, 66, 67], k-nearest 

neighbor (k-NN) [16], hidden Markov model [22], fuzzy 

systems [31, 38], etc. All classical classifiers have only one 

classifier in common. Ensemble ML classifiers, which mix 

many classical classifiers, have recently been presented as a 

way to increase the performance of a single classifier. The 

random forest (RF) introduced by Breiman is one of the most 

widely used ML algorithms, with applications in a wide range 

of fields [9, 16]. In present work uses a filter-based method that 

selects low-frequency signals between 63.572 and 64.572Hz 

[1], knowing that all noise sources are eliminated, making the 

classification stage easier, such as the machine learning 

algorithms that gives higher results because of the high speed 

of classification and prediction compared to other algorithms. 

Then the use of optimization algorithms like a genetic algorithm 

(GA) finds good parameters filling more stable and efficient 

[2]. As a result, the results in this work show the detected 

alcoholism fictitiously in a population with an accuracy value 

is more than 99% without using data decomposition algorithms. 

The rest of this article is organized as follows, section II present 

the related work for this paper, section III presents the dataset 

used, data processing, classification and optimization 

algorithms proposed for the prediction system, the results 

obtained and discussed are presented in section IV, while 

section V provides conclusions and an overview of future work. 

II. RELATED WORK 

In the past, several studies have been conducted using EEG 

signals to identify alcoholism and non-alcoholic subjects. 

Anuragi and Sisodia [12] have proposed a new machine 

learning framework based on Experience Wave Conversion 

(EWT) for classifying alcohol and normal subjects using EEG 

signals. Boundary detection methods are used to segment the 

Fourier spectrum of EEG signals represented in proportional 

space. Hilbert Huang transform (HHT) uses real-time 

amplitude (AI) and real-time frequency (IF) to check time and 

frequency information for a single region. AI and IF are used to 

form built-in pattern (IMF) functions. The conversion of 

stopgap waves (EWT) using Hilbert–Huang transform (HHT) 

extracts statistical characteristics from each built-in pattern 

function (IMF), such as mean, standard deviation, variance, 

distortion, Kurtosis, Shannon entropy, and record entropy. 

Extracted entities are evaluated by t-tests to find the most 

important entities. Important functional arrays are available for 

a classification algorithms variety that is listed as considering 

least square-SVM (LS-SVM), support vector machines (SVM), 

Nave-Bayes (NB), and k-nearest neighbours (K-NNs). Cross-

validation (LOOCV) is used to train and test used models to 

minimize the over-fitting possibility. Mehla et al. [45] uses a 

new method based on the Fourier theory, called the Fourier 

decomposition method (FDM), to automatically identify 

alcoholism using sensory signals (EEGs). The FDM method is 

used to decompose the EEG signal into many required 

orthodectonic elements, often referred to as Fourier inherent 

band functions (FIBF) and to obtain this by dividing the entire 

EEG signal band under analysis into equal frequency bands. 

Time-domain features such as Haworth parameters, kurtosis, 

quarter-to-quarter intervals, and average frequencies are 

extracted from FIFS. To reduce complexity, the Kruscal-Wallis 

(KW) statistical test uses the most important features. Tunable-

Q wavelet transform (TQWT) features collected from EEG data 

were used by Patidar et al. [52] to present a new method for 

diagnosing alcoholism. The centred corr-entropy (CC) is 

extracted from the fourth decomposed detail sub-band using 

TQWT-based decomposition. For feature reduction, PCA is 

applied, and LS-SVM is used to identify normal and alcoholic 

EEG signals. A 10-fold cross-validation approach is used to 

ensure that classification performance is dependable. Rodrigues 

et al. [56] have announced a new classification of EEG Alcohol 

Signals using wave subcontract degradation (WPD) and 

Machine Learning Technology. The experiment uses the 

minimum value, high point, means, standard deviation, power 

value, absolute mean, and absolute mean as the characteristics 

to provide the classifier. These characteristics are combined 

with the ability to explore the ability to perform such 

characteristics to classify alcoholism. Fastening tasks are 

performed using SVM, optimal path forest (OPF), Naive Bayes, 

k-nearest-neighborhood (k-NN), and multi-layer-perceptron 

(MLP). Upadhyay et al. [64] propose a method for extracting 

EEG signals characteristics using continuous-wave conversion 

and suggests and validates two different brain states for 

identification: alcoholism and normality. The wave continuous 

conversion coefficient using four different base waves is 

calculated from the processed EEG signals. In addition, the 

statistical parameters of each basic wave are calculated, and the 

feature carrier is generated from EEG. Anuragi and Sisodia [10] 
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used a nonlinear parameter signal support vector computer 

technology in the characteristic time-frequency domain 

extracted from the EEG signals. The function uses continuous 

wave conversion extraction, and the adjusted Q-wave 

transformation (TQWT) is used for signal disassembly and to 

extract centralized core anthropology (CC) functions (which are 

subs slices of decomposition) and to look for small changes in 

nonlinear signals with delay time delays, much like signal auto-

association. These features are reduced by applying PCA and 

passed to an LSSVM for EEG signals classification of alcoholic 

and normal. Taran and Bajaj [63] propose an EEG rhythm-

based feature for automatically identifying and analyzing 

alcohol EEG signals. Analysis by the built-in pattern function 

(IMF) represents that the calculated instantaneous frequency is 

used to isolate different frequency ranges called EEG rhythms. 

The IMF obtains this by applying the decomposition of 

empirical models to EEG signals. The variability and 

complexity of isolated EEG rhythms are measured by 

characteristics such as mean absolute deviation, quarter range, 

variance coefficient, entropy, and inverses. The P-value 

analysis of these features reveals that low-frequency rhythm 

(LF)-based characteristics have high statistical relevance for the 

identification and neurological interpretation of alcohol EEG 

data. The LF rhythm function serves as an input to the ML 

algorithm, an LS-SVM classifier used to classify normal and 

alcoholic EEG signals. Mumtaz et al. [48] use static EEG 

derivation as input data for recommended functional selection 

and classification methods. The goal is automatic classification 

and health control of alcohol use disorder (AUD) patients. The 

validation of the proposed method included actual EEG data 

obtained from health controls that matched AUD patients. 

Functions extracted from rest EEG, such as synchronization 

likelihood (SL), are calculated to contain 19 scalp positions and 

create 513 functions. In addition, this feature is commanded to 

select the most discrete features according to the standard, 

including the range-based functional selection method, the 

receiver operating characteristics (ROC). Therefore, when 

classifying AUD and healthy control patients, a small group of 

the most discrete characteristics was found and used. Mumtaz 

et al. [47] propose an ML approach that ranks alcoholics and 

health controllers (1, 2) with health control, alcoholics, and 

alcoholics (1). Suggested ML methods include extracting 

QEEG characteristics, selecting the most relevant features, and 

classifying them as relevant study participants. Acharya et al. 

[7] present a nonlinear characteristics-based computer-aided 

diagnosis (CAD) technique for automatically recognizing 

normal and alcoholic EEG signals. First, it is extracted and used 

to train nonlinear features such as SVM classifiers (1st, 2nd, 

and 3rd polyhedral and radial substations) (RBF), such as 

approximate entropy (ApEn), maximum Leaponov index 

(LLE), sample entropy (SampEn), and four other higher-proof 

of stake functions (POS). Rachman et al. [54] recommends the 

use of a stand-independent component analysis (ICA) algorithm 

as a functional extraction method for the stationary wavelet 

transform (SWT) of notation and divides it into two categories, 

namely alcoholism and normality, using probabilistic neural 

network (PNN). 

III. MATERIALS AND METHODS 

A. Dataset 

The dataset used in the study (KDD dataset) of EEG signal 

acquired during tests on subjects with a genetic predisposition 

 
 

Fig. 1.  Proposed general architecture for alcoholism dataset classification. 

 
 

Fig. 2.  Electrodes position for alcoholism detection dataset. 
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to alcoholism. The cognitive decline surveyed subjects who 

were not able to cool the alcohol, where all subjects were 

divided into two groups: control and alcohol, for the alcohol 

group, consisted of 77 male alcoholics with an average age of 

35.83, with ages ranging from 22.3 to 49.8 years, on the other 

hand, the control group consisted of 48 subjects who had no 

specific family history of drugs or alcoholism or any history of 

mental or neurological disorders [56]. According to the 

international system 10-20, there are 61 non-invasive channels 

of the international electric cap for signal acquisition, where 

each electrode impedance is always below 5.0kΩ, and the 

subject is punished with a nasal electrode. The EEG signal is 

sampled at 256Hz during 190 milliseconds of the postulation 

baseline, 1440 milliseconds after each stimulus. The signal is a 

band that is transmitted between 0.02 and 50Hz using an EPA-

2 amplifier. Stimulation was done under three conditions using 

the Snodgrass and Vanderwat acquisition datasets [56]:  

• Condition 1: A single stimulus package (S1) was proposed 

to the subjects.  

• Condition 2 (matching condition): Stimulus 2 (S2) is 

repeated as S1.  

• Condition 3 (nonmatching condition): S2 is followed by 

another image of S1 in its meaning category.  

Fig. 2 illustrates all 61 electrodes used to acquire EEG signals 

during the alcoholism detection experiment, we notice that all 

the electrodes are distributed over the entire scalp surface, this 

improves the signals acquired quality. 

B. Data processing   

This study used EEG data from all 122 subjects in the 

alcoholism dataset. The acquisition time was 11056 seconds 

and the sampling rate was 256 Hz. The compressed data size is 

only 40 seconds (10240 samples), this is guaranteed that the 

signal will sample one second of data every 276 seconds of the 

margin. The signal is applied to the gamma bandwidth (all 

frequencies from 40 to 80 Hz) with the filter bandwidth, signal 

and labels fs = 256Hz. shuffle (random-state = 123) and 

splitting the data by 80% for training, the remaining 20% for 

testing. The label shows the various EEG signal tasks obtained 

in the alcoholism dataset as tracking:  

• Task ’A’: The subject is an alcoholism  

• Task ’C’: The subject is a control (non-alcoholism). 

1) Correlation matrix: The electrode correlation coefficient is 

a statistical measure of the linear correlation between two 

electrode signals.  

𝑐𝑜𝑟𝑟𝑥𝑦 =  
∑(𝑋−�̅�)(𝑌−�̅�)

(√∑ (𝑋−�̅�)𝑛
𝑖=1 )(√∑ (𝑌−�̅�)𝑛

𝑖=1  )

 (1) 

The correlation coefficient is expressed as 1, and n is the 

sample size, X, �̅�, Y, and �̅� are observations and averages for 

the two variables, respectively. Describes the degree of linear 

correlation cor between two variables. Correlation coefficients 

range from 1 to 1. 𝑐𝑜𝑟𝑟𝑥𝑦> 0 indicates that the two variables are 

positively related. If 𝑐𝑜𝑟𝑟𝑥𝑦 < 0 indicates a negative correlation 

between two variables, we can use the corr() method learned in 

scikit-learn to calculate the standard correlation coefficient 

between each pair of channels or calculate the correlation 

between each property and classification label and select the 

most relevant primary channels data. 

2) Band-pass filter:  In this proposal, we are interested in 

applying filters to eliminate the simplest preprocessing 

techniques for undesirable frequencies. To do this, we chose 

Butterworth filters, which are widely used in many of BCI 

applications, because they produce uniform pitch bands. This 

filter, also known as the maximum plane filter, is widely used 

in different signal processing applications due to its 

functionality [1, 57]. The main advantage of Butterworth filters 

is that they respond by flat size in the band, but have the cost of 

a wide transition band. For high-speed four-wire centre 

conversion, we can apply a Butterworth bandpass filter in the 

frequency domain that represents H(u; v) in revenue. 

𝐻(𝑢, 𝑣) = 1 −  
1

1+[
𝐷(𝑢,𝑣)𝑊

𝐷(𝑢,𝑣)2−𝐷0
2]

2𝑛 (2) 

D(u; v) is the distance between the (u; v) point and the 

frequency rectangle center. W is the bandwidth 𝐷0 is the band 

center, n is the filter order [57]. For a N filter, the four-power 

function of the function equation size is: 

|𝐷(𝑗𝜔)|2 = 1 + 𝜀𝜔𝑛
2𝑁 (3) 

𝜔n represents the normalization frequency, 𝜀 represents the 

route band attenuation. We also do zero-phase digital filtering 

to avoid work parts. The algorithm returns a filtered signal 

indicating that an event is returned immediately after the 

original signal occurs [57]. 

C. Channels selection   

Various ML algorithms enable determining the relevance 

 

 
 

Special Issue on Smart Cities, Optimization and Modeling of Complex Systems – iJIST, ISSN : 2550-5114
                                                                                                                          Vol. 6 - No. 1 - February 2022

http://innove.org/ijist/ 17 



degree of each electrode for the classification stage, and 

channel selection are extremely crucial to reduce the number of 

acquiring electrodes without affecting the accuracy of the 

system [3, 4]. The Extra tree (ET) is used in this study to 

provide gradual learning by expanding the leaf nodes without 

recreating the entire tree. As a result, the classifier may be 

retrained using online streaming data [3]. Algo. 1 pseudo-

coding demonstrates the complete additional tree construction 

method. If the number of examples |D| is fewer than 𝑛0, or if all 

candidate attributes in the example list D are constant, or if the 

output variable in D is constant, a new leaf node Tree is 

generated, containing the example list D and the class label 

distribution. A split test s is installed according to the split 

method in RF [28] when a leaf node is converted into a decision 

node, and two new descendant leaves 𝑇𝑟𝑒𝑒0 and 𝑇𝑟𝑒𝑒1 are 

generated. The old leaf node’s example list is divided and 

populated into two new descendant leaves. The class label 

distribution on the new descendant leaves is also recalculated. 

The entire forest-building process is fairly quick since we only 

have to deal with a limited number of samples at a time [3]. For 

the feature selection based on Eq. (4), we can easily calculate 

the degrees of importance of each feature, so the normalized 

values are determined by Eq. (5). 

𝐹𝐼[𝑖] = ∑ 𝑛𝑗 ∗ ∑ 𝑓𝑘 ∗ (1 − 𝑓𝑘)𝑇𝑟𝑒𝑒
𝑘=1  𝑗 𝑖𝑛 𝐹  (4) 

𝑁𝐹𝐼[𝑖] =
𝐹𝐼[𝑖]

∑ 𝐹𝐼[𝑘]𝑘 𝑖𝑛 𝐹
 (5) 

D. Classification  

1) Gradient Boosting Model (GBM): Friedman’s return 

mission was enlarged in 2011 when he introduced a gradient 

boosting system (GBM). The objective of GBM is to create an 

additive model that minimizes functionality loss [3, 4, 29]. As 

a result, Chen and Guestrin [18]’s extreme gradient booster 

(XGB) is an effective collection learning technique based on 

gradient boosted regression trees (GBRT) [35, 43]. The main 

concept behind cooperative learning is to generate a large 

number of underperforming elementary school students. GBRT 

in Algo. 2 detects error disparities between each weak student 

and the last regression tree using pulse techniques. The ultimate 

projected value for a particular input is the sum of all the results 

in the regression tree. The most essential aspect of XGBoost’s 

success is its scalability across all circumstances. On a single 

machine, the system is 10 times quicker than existing popular 

methods, and it is scalable to billions of instances in distributed 

or memory-limited environments. XGBoost’s scalability is due 

to several key systems and algorithmic improvements. A unique 

tree learning technique for managing sparse data is one of these 

advances, as is a theoretically justified weighted quantile sketch 

procedure for handling instance weights in approximation tree 

learning Chen and Guestrin [18]. Parallel and distributed 

computing speed up learning, allowing for more rapid model 

exploration. XGBoost also takes use of out-of-core processing, 

allowing data scientists to process hundreds of millions of 

samples on a single computer. Finally, combining these 

approaches to create an end-to-end system that scales to even 

greater data with the least amount of cluster resources is even 

more intriguing Chen and Guestrin [18]. 

2) Random Forest (RF): Random forests are a set of decision 

trees built from a guided sample of the original training set with 

a different set of subsets. The getting process randomly creates 

many different training sets from the original data set, each of 

which is used to training an individual decision-tree tree. 

During training, each decision tree node uses functions to 

separate and optimally classify in a randomly selected set of 

functions [2, 36, 42]. While creating the forest, each tree of 

solutions grows to the maximum depth without sorting on the 

square label and freely voting. As a final decision, forests will 

accept the highest voting class. The randomness of both training 

kits and selected tasks provides a variety of tree solutions, 

leading to high reliability against overfitting [16, 36]. 

k-Nearest Neighbor (k-NN): Most ML algorithms are used in 

conjunction with the KNN algorithm. The KNN classifier 

assigns the most frequent category label points in a specific 

category space k to the nearest training set [2]. The Euclidean 

distance between two points, calculated by the KNN classifier, 

is |⍴𝑝 − ⍴𝑞|, dimensions 𝑥 and 𝑥 + 1 can represent integral size 

d and delay time 𝑇𝑑, and these distances are given by [30]: 

𝜎𝑥
2 = ∑ [⍴𝑝(𝑡 + 𝑑Td) − ⍴𝑞(𝑡 + 𝑑Td)]2 𝑥−1

𝑑=0  (6) 

 Build feature vectors when training during classification, these 

vectors are represented by assigned samples, calculate the 

distance from the new vector to all-composite vectors, and 

select the nearest K samples. 

3) Multi-Layer Perceptron (MLP): Multilayer perceptrons, 

called MLP networks, are mainly used to create classifiers. The 

main problem of using MLP networks is to determine the initial 

size of the network, associated with the number of hidden layers 

and neurons [2, 60]. MLP is a very popular artificial neural 

network technology that can map an input to output. The input 
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layer, hidden layer, and output layer are the basic building 

blocks of an MLP model. Back-propagation learning 

technology is used to train the network. 

E. Parameters optimization  

1) Algorithm Genetic (GA):  Genetic Algorithm (GA) is a 

parallel storage search optimization method developed by John 

Holland [32, 44], simulation of natural and bioethics genetic 

mechanisms in 1975. The main idea is to randomly generate 

early populations, constantly updating them through genetic 

operations such as selection, intersection, and mutation, and 

ultimately to obtain better solutions [21, 44]. The selection 

method of genetic algorithm features: First, encodes the entity 

parameters and gives the population an initial size decision. 

Each person in the population corresponds to a possible 

solution. Each person’s fitness value is then calculated based on 

the competency value function. Set the probability of human 

forks and mutations [2, 44, 61]. The next generation is using 

appropriate genetic strategies, such as cross-rate, mutation rate, 

and selection rate until population yield reaches certain targets 

or completes a preset number of iterations [19, 44]. 

2) Harris Hawks Optimization (HHO): HHO is a new 

optimization algorithm, and its capabilities have not been 

widely studied in practice. The HHO algorithm was inspired by 

predatory birds in nature, such as Harris hawks, for their 

cooperative behaviours and pursuit strategies, and gives several 

escape models for the victim’s movement and jumping. To 

solve optimization problems, various equations modelled after 

the social intelligence of Harris hawks were developed. 

Twenty-nine unconstrained benchmark tasks were used to 

evaluate HHO’s performance. The avoidance of exploitative, 

exploratory, and local optima of HHO was investigated using 

unimodal, multimodal, and composition tasks. It was capable of 

discovering remarkable solutions when compared to other well-

known optimizers [2, 13, 33]. 

IV. RESULTS AND DISCUSSION 

 

The experiments were conducted on the 2.4 GHz desktop and 6 

GB of RAM with four Intel®Core (TM) i5 CPUs and 64 

bit/Windows 10 operating system. 

   a) Confusion matrix   b) Confusion matrix of (A,C) classification 

 
Fig. 3. Example of (A,C) binary-class confusion matrix 

          a) Alcoholic                       b) Normal 

Fig. 4. A part of EEG for each binary-class (alcoholic or normal) acquired using 61 electrodes 

TABLE I 

SYMBOL AND DESCRIPTION 

Symbol Description 

N-est n-estimators 
L-rate learning-rate 

RS random-state 

NEEG Number of Electrodes 

AC Accuracy 

SE Sensitivity 
PR Precision 
F1 F1-score 
K Kappa-score 
MC Matthews Correlation 
JS Jaccard-Score 
CN Complete Ness 
NM Normalized Mutual Info 
H Homogeneity 
FM Fowlkes Mallows 
EV Explained Variance 
VM V-Measure 
MI Mutual Info 
ZOL Zero One Loss 

Tc Classification time 

Tp Prediction time 

To Optimization time 

Sc Classification speed 
Sp Classification speed 
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A. Model evaluation 

The classification performance of into-concentrated classes is 

the most common technique of comparison algorithms. 

Therefore, there are some standard metrics in the field of 

computer learning to evaluate and compare the performance of 

different methods [37, 62]. Precision (PR), sensitivity (SE), 

accuracy (AC), and F1-score (F1) are considered to evaluate the 

classification performance of individual sleep stages 

representing the true-positive, true-negative, false-positive, and 

false-negative numbers of TP, TN, FP, and FN, respectively 

(Fig. 3.a). Accuracy in Table I is the most commonly used 

measure of experience, and it does not distinguish between 

different types of correct labels: 

𝐴𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (7) 

Instead, there are two measures that are clearly close to the 

display of different classifier classes: 

𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (8) 

𝑆𝐸 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (9) 

𝑆𝑃 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (10) 

Sensitivity and specificity are commonly used to measure the 

performance of biomedical and complex data in the 

classification process [37, 62]. In this paper, sensitivity and 

specificity define the accuracy of detecting focal length and 

non-higher signals, respectively. Another measure used to 

evaluate performance is the measurement of F1 [62], then write 

as follows: 

𝐹1 =
2∗𝑃𝑅∗𝑆𝐸

𝑃𝑅+𝑆𝐸
=

2∗𝑇𝑃

2∗𝑇𝑃+𝐹𝑃+𝐹𝑁
 (11) 

Cohen’s Kappa (kappa) and Matthew’s correlation coefficients 

(MC) are values of 1and10 that represent random correlations, 

while large positive (negative) values represent good (low) 

predictive quality for a particular structural class: 

𝑀𝐶 =
𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
 (12) 

 
         a) Without Filter                    b) Using Filter 

Fig. 5. Correlation matrix for alcoholism detection EEG signals using the best 22 electrodes 

a) Without Filter                     b) Using Filter 

Fig. 6. Channels selection classification for alcoholism dataset before and after the application of band pass filter 
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{
𝑃𝑒 =

(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)+(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)2

𝑘 =
𝐴𝐶−𝑃𝑒

1−𝑃𝑒

 (13) 

𝑃𝑒 or the possibility of an unexpected hypothetical agreement. 

The prediction speed of a generated prediction model is an 

essential parameter that makes it possible to evaluate the 

performance of the generated models using different 

classifications according to the maximum number of 

predictions per second probably during real-time testing, where 

it can be calculated by: 

𝑆𝑝 =
𝑡𝑒𝑠𝑡−𝑑𝑎𝑡𝑎−𝑠𝑖𝑧𝑒

𝑇𝑝
=

100∗(𝐹𝑃+𝐹𝑁)

𝑇𝑝∗(100−𝐴𝐶)
 (14) 

The classification speed of a classifier is a parameter that 

makes it possible to determine the degree of ease of the 

prediction models during training, which makes it possible to 

improve the speed of optimization of the different parameters 

of the global systems towards extremum states, where it can 

be calculated by: 

𝑆𝑐 =
𝑡𝑟𝑎𝑖𝑛−𝑑𝑎𝑡𝑎−𝑠𝑖𝑧𝑒

𝑇𝑐
=

4∗100∗(𝐹𝑃+𝐹𝑁)

5∗𝑇𝑐∗(100−𝐴𝐶)
 (15) 

B. Data analysis results 

Fig. 4 shows some EEG signals acquired for the different 

classification tasks before and after employing the bandpass 

filter, we notice that the signals in Fig. 4.a (Alcoholic) are more 

active compared to those in Fig. 4.b (Normal). Fig. 4.c shows 

that all signals are less noisy and that the number of the picks is 

very high compared to the normal state due to an increase in 

eyes’ blink, which means the possibility of detecting the 

difference between the tasks from signals of the electrodes 

(CP1; PZ; O1; AF8; C1; F1; . . . etc.) easily. 

1) Correlation matrices analysis: Fig. 5 shows correlation 

matrices of the twenty best electrodes selected with and without 

employing the filter, such that shows the links degree between 

every two electrodes signals. From this figure, we notice that 

the correlation matrix is changed completely after the 

application of the filter, as the best electrodes are possessed at 

values between -0.5 and 0.5. In Fig. 5.a, the best electrodes are 

(CPZ and C4), on the other hand, in Fig. 5.b, the best electrodes 

are (F8, FP2, and F5) compared to the other electrodes. 

2) Channels selection results: Fig. 6 shows an order of all 

electrodes contributions when the classification phase, such that 

without the use of the filter (Fig. 6.a), the degree of all 

importance electrodes is between 0.014 and 0.02, knowing that 

the best electrode is PO8 and the bad is AF1, after the use of the 

filter (Fig. 6.b), we notice a great variance in the contribution 

degree of all electrodes is between 0 and 0.13, such that the best 

electrode is P8 and the bad is FT7. Fig. 6 shows the results of 

channel selection before and after the application of optimized 

filter using the Extra Tree algorithm, such that before the 

application of the filter in Fig. 6.a, we note that all channels with 

degrees of importance between 0.014 and 0.019, with only that 

the channel PO8 has a degree of 0.025, which shows that it is 

difficult to separate between alcoholics and normal, on the other 

hand when using the optimized filter in Table II, there is a good 

structure of the degrees of importance in Fig. 6.b, such that it is 

easy to separate between the good and bad channels, knowing 

that we can minimize the number of channels up to only two 

channels and more than reserved the best characteristics that 

makes it possible to identify each class. In addition, we notice 

that the best electrodes are positioned in the left part of the 

TABLE V 

K-NN PARAMETERS OPTIMIZATION USING HHO AND GA FOR (A, C) 

CLASSIFICATION 

 

 
Optimizer 

 

p 

 Classification results 

AC (%) k (%) ZOL To(s) 

GA 1.9922513884  97.75 95.03 46 0.97 

HHO 1.0127381746  98.78 97.31 25 1.39 

HHO 2.2174709614  98.88 97.52 23 4.69 

HHO 2.3406354759  98.93 97.63 22 5.42 

HHO 1.1528103266  98.97 97.74 21 7.01 

HHO 1.7625903302  99.22 98.28 16 19.22 

GA 2.3165790702  99.32 98.49 14 22.23 

GA 2.6955487125  99.37 98.60 13 23.02 

GA 1.7827951227  99.46 98.81 11 56.85 

 

TABLE IV 

RF PARAMETERS OPTIMIZATION USING HHO AND GA FOR (A, C) 

CLASSIFICATION 

 

 
Optimizer 

 

N-est 

 Classification results 

AC (%) k (%) ZOL To(s) 

GA 137  98.63 96.97 28 4.22 

GA 302  98.78 97.30 25 12.16 

HHO 198  98.83 97.40 24 97.01 

 

TABLE II 
FILTER PARAMETERS OPTIMIZATION USING HHO AND GA FOR (A, C) 

CLASSIFICATION 

 

 
Optimizer 

 

fb 

  Classification results 

fh AC (%) k (%) ZOL To(s) 

GA 41.469803 68.932422  63.92 17.63 739 1.28 

HHO 47.529807 50.649080  77.44 48.24 739 1.54 

HHO 43.850670 46.495947  78.37 50.22 443 2.90 

HHO 56.103037 58.533968  78.61 50.86 438 5.31 

HHO 77.105243 78.788212  84.86 65.71 310 21.12 

HHO 48.288506 49.288506  93.16 84.73 140 27.26 

GA 63.631224 64.631224  98.93 97.63 22 28.95 

HHO 63.572104 64.572104  99.37 98.60 13 41.38 

 

TABLE III 
XGBOOST PARAMETERS OPTIMIZATION USING HHO AND GA FOR (A, C) 

CLASSIFICATION 

 

 
Optimizer 

 

N-est 

  Classification results 

L-rate AC (%) k (%) ZOL To(s) 

HHO 160 0.2187802408  98.29 96.22 35 3.03 

HHO 140 0.8918738539  98.39 96.43 33 22.16 

GA 190 0.8197804863  98.44 96.54 32 176.07 

GA 427 0.5047845072  98.63 96.98 28 148.14 
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central lobe and in the right part of the frontal and parietal lobes, 

which implies that these areas are more sensitive to alcoholism  

and consequently that all the nervous systems of the organs 

related to these parts of the brains will be negatively influenced. 

C. Classification Results 

 Table III shows optimization of the EEG signals classification 

when applying GA algorithm on the XGB parameters, such that 

the employing of the bandpass filter can increase the accuracy 

value to over 97% and the GA algorithm looks for efficient and 

stable combinations of XGB parameters and the same 

procedure for RF in Table IV and for k-NN in Table V, so this 

table shows an accuracy value increase over of 98.7% and a 

decrease of ZOL value from 118 to 52 errors. Thus, when the 

number of estimators increases, also the classification time and 

accuracy values increase, but the most important in an EEG 

signal prediction system are the classification speed, the 

prediction speeds, the accuracy value, and the number of 

electrodes used for EEG acquisition. Table VI shows a 

classification of alcoholism EEG dataset when using a bandpass 

filter with order 3 and bandwidth between 63.572 and 

64.572Hz, such that all the accuracy values are more than 

99.5%, which shows the filter used efficiency, as well as when 

the number of electrodes decreases to 10, the accuracy values 

remain more than 99.5%, which shows a good state of 

prediction system stability also when the number of the 

electrodes decreases. The prediction speed of this system 

remains very fast between 25501 and 76923 samples per 

second, so the classification speed is also between 408 and 4625 

samples per second, this speed shows the goodness of the 

system presented in this paper. Also, this table shows that the 

accuracy value remains high at the order of 95% during the third 

condition using only four of the most contributed electrodes 

(P8, FC4, FZ, and PZ), these electrodes characterize a brain 

activity variation at the level of both frontal and parietal lobes 

at the extremity of the left and right temporal lobes. This table 

shows classification results using other classifiers like RF, 

KNN, MLP, and DNN. Knowing that the maximum accuracy 

value is 99.90% found using k-NN but with a bad prediction 

speed of 106 samples per second, against XGB allows predicted 

this EEG data with a speed of 33820 samples per second, i.e. a 

speed 300 times higher than the speed when using the k-NN 

TABLE VI 

CLASSIFICATION RESULTS FOR ALCOHOLISM DATASET BINARY-CLASS USING MACHINE LEARNING ALGORITHMS 

 
Classifier 

 
NEEG 

 Classifier performances 

ACC (%) SE (%) PR (%) F1 (%) K (%) MC (%) JS (%) MI ZOL Tc (s) Tp (s) 

XGB 61  99.95 99.96 99.93 99.93 99.89 99.89 99.89 0.64 1 10.27 0.01 

XGB 10  99.80 99.75 99.82 99.78 99.57  99.57 99.57 0.63 4 3.75 0.01 

XGB 5  98.10 97.49 98.28 97.87 95.74 95.75 95.83 0.55 39 3.31 0.02 

XGB 4  95.51 94.16 95.85 94.92 89.85 89.99 90.38 0.46 92 3.68 0.03 

XGB 3  90.23 88.13 89.92 88.92 77.86 78.03 80.26 0.32 200 3.99 0.03 

LGBM 61  99.95 99.96 99.93 99.93 99.89 99.89 99.89 0.64 1 1.51 0.01 

LGBM 10  99.76 99.75 99.71 99.73 99.46 99.46 99.46 0.63 5 0.45 0.01 

LGBM 5  98.58 98.24 98.61 98.42 96.84 96.85 96.90 0.57 29 0.45 0.01 

LGBM 4  96.53 95.52 96.77 96.10 92.20 92.28 92.52 0.49 71 0.51 0.01 

LGBM 3  93.36 91.77 93.37 92.49 84.99 85.12 86.14 0.40 136 0.86 0.03 

KNN 61  99.90 99.89 99.89 99.89 99.78 99.78 99.78 0.63 2 0.22 1.93 

KNN 10  99.80 99.82 99.75 99.78 99.57 99.57 99.57 0.63 4 0.04 0.28 

KNN 5  99.12 98.89 99.16 99.02 98.04 98.05 98.06 0.59 18 0.04 0.23 

KNN 4  97.61 97.19 97.49 97.33 94.67 94.67 94.82 0.53 49 0.02 0.23 

KNN 3  94.87 93.78 94.77 94.24 88.49 88.54 89.18 0.44 105 0.02 0.24 

RF 61  99.85 99.82 99.85 99.84 99.67 99.67 99.68 0.63 3 12.39 0.15 

RF 10  99.61 99.46 99.67 99.57 99.13 99.13 99.13 0.62 8 5.41 0.14 

RF 5  97.51 96.74 97.73 97.21 94.41 94.46 94.58 0.53 51 3.83 0.11 

RF 4  95.75 94.27 96.31 95.18 90.37 90.56 90.85 0.47 87 3.92 0.14 

RF 3  92.43 90.24 90.24 91.35 82.72 83.05 84.22 0.38 155 2.59 0.14 

MLP 61  99.71 99.64 99.71 99.67 99.35 99.35 99.35 0.62 6 14.67 0.05 

MLP 10  99.61 99.57 99.57 99.57 99.13 99.13 99.14 0.62 8 28.08 0.03 

MLP 5  96.29 94.85 96.96 95.79 91.59 91.79 91.95 0.49 76 70.28 0.05 

DNN 61  99.56 99.53 99.50 99.51 99.02 99.02 99.03 0.61 9 20.15 0.03 

DNN 10  99.76 99.71 99.75 99.73 99.46 99.46 99.46  0.63 5 28.76 0.07 

DNN 5  94.63 92.80 95.28 93.88 87.77 88.05 88.54 0.44 110 56.71 0.02 

DNN 4  89.26 86.33 89.52 87.60 75.28 75.78 75.23 0.30 220 58.75 0.02 
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algorithm. Table VII presents the classification results for other 

methods when classifying EEG signals from the alcoholics and 

normal subjects, knowing that the best accuracy value found is 

100% found by Upadhyay et al. [64] using a Morlet-RF method, 

but this work does not present the calculation procedure to 

properly show its results. The second-best method finds an 

accuracy value of 99.98% found by Mehla et al. [45] using 

FDM-LDA, this method shows a good selection of orthogonal 

features between them to increase the independence index and 

then minimize the correlation between all electrodes. The 

method used by Rodrigues et al. [56] also finds a good precise 

value of 99.87% using the algorithm Nave-Bayes and the 

decomposition of data using Biorthogonal, this method is based 

on the same principle of the FDMLDA method for selecting 

orthogonal features between them, but these methods are very 

slow during a real-time for classification and prediction stages, 

because of more load of the decomposition algorithms used 

compared to our method which is based on a simple bandpass 

filter and the XGB algorithm for data classification with 

accuracy values more than 99% using more than 4 electrodes to 

acquire EEG signals. The work of Anuragi and Sisodia [12] 

finds a good accuracy value of 98.73% when applying EWT to 

extract EEG waves, such that the conversion of waves using 

HHT can extract a set of characteristics and with the use of the 

LS-SVM algorithm for classification shows that this method is 

preferable, but the use of features extracted in real-time can 

minimize the prediction speed of the global system in time real 

compared to our method because of the high density of 

calculation at each moment. Also, the work of Mumtaz et al. 

[48] uses the statistical derivations of raw EEG and the 

extraction of the characteristics using SL and ROC function to 

minimize the number of features that have been extracted up to 

the minimum possible, which gives as results an accuracy value 

of the order of 98% which is a minimal can be compared to that 

found by Anuragi and Sisodia [12] probably because of the use 

of basic classify as SVM, NB, logistic regression (LR). In the 

work of Taran and Bajaj [63] we can also notice that the 

precision value was found is at the level of 97.92% using low 

frequencies extracted using the IMF function, such that it 

extracts from these frequencies some characteristics like 

entropy, mean, variance, etc. to increase the degree of 

separation between the two classes, this method shows the 

results of the optimization of Table II, as illustrated in Fig. 4 

that the frequency of signals increases in the case of alcoholics 

compared to normal people, which shows that it is possible to 

use low frequencies for the classification shown by this work of 

Taran and Bajaj [63] or by using high frequencies of the gamma 

wave in our work. Also, the work of Patidar et al. [52] presents 

the results of the application of TQWT for the extraction of 

EEG signal characteristics and the use of ICA filter in 

combination with the LS-SVM classification to minimize the 

correlation values between features and improved data 

classification, such that this method shows that the accuracy 

value is at the level of 97.02% which is also a good prediction 

but it remains not ideal by compared to other methods  

V. CONCLUSION 

In conclusion, this work shows the great performance of the 

machine learning algorithms for the Alcoholism EEG 

classification, such that the use of the bandpass filter can 

eliminate all existing links between all electrodes and extract 

only the best features that are found in low frequency, the 

employing of correlation matrix makes it easy to see the effect 

of the filter, the machine learning algorithms also shows its 

classification quality with high pus accuracy values of 99% and 

prediction speeds passes 25500 samples per second, knowing 

that the application of the third condition on subjects can easily 

deduce alcoholism compared to normal with an accuracy value 

of 100%, this value summarizes the alcoholism detection 

quality using simple and fast method compared to the literature 

results. It is hoped that this work can help other biologists and 

medical researchers. Our future work is focused on real 

applications in diagnostic and control based on EEG signals. 
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