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Abstract— The Deep Reinforcement Learning Process 

(DRL) has made considerable progress since its inception 

towards the production of various independent systems. 

Nowadays, deep learning gives Reinforcement Learning (RL) 

the ability to conform to several dysfunctions that were 

previously difficult, if not impossible to resolve. In this paper, 

we explore the power of Deep Reinforcement Learning in order 

to solve the problem of portfolio management which is a process 

that allows the selection, prioritization and management of 

funds by following a defined policy. Our objective is to obtain 

an optimal strategy to maximize the expected return while 

minimizing the costs. To do this, we use the Deep Deterministic 

Policy Gradient which is an off-policy algorithm adapted for 

environments with continuous action spaces. The obtained 

results demonstrate that the model achieves a higher rate of 

return than the strategy of “Uniform Buy and Hold” stocks and 

the strategy of “Buy Best Stock in last month”. 

Keywords—Portfolio Management, Reinforcement learning, 

Deep Learning, Deep Deterministic Policy Gradient 

 

I. INTRODUCTION  

The financial market is an environment known for its 
complex composition. It is characterized by uncertain and 
changing information, dynamic opportunities, multiple goals 
and strategic considerations, which make it a system for which 
it is difficult to design an optimal and profitable strategy that 
maximizes returns while avoiding risks [1]. Reinforcement 
Learning can help build such decision systems. It is based on 
agents who tend to obtain an optimal policy through trial and 
error by interacting directly with the environment [2]. In this 
paper, we adopt this type of learning to find the best possible 
behavior for Portfolio management.  

Portfolio management is the decision making process of 
continuously reallocating an amount of funds into a number 
of different financial investment products, aiming to 
maximize the return while restraining the risk [3][4]. To 
analyze the allocation, risk and return of a given portfolio, 

different benchmarks can be used. In this work, we will 
exploit two benchmarks which are: “Uniform Buy and Hold” 
and “Buy Best Stock”. 

“Uniform Buy And Hold” [5], also called market strategy 
refers to a passive investment strategy in which an investor 
buys carefully selected stocks and holds them for a long time, 
regardless of market fluctuations. This strategy is based, 
among other things, on the assumption that the economy will 
continue to grow over the long term and that earnings and 
stock prices will continue to rise. This allows the long-term 
investor to build a high-performance and balanced portfolio 
while devoting very little management time to it. 

As for the “Buy Best Stock” [5], this is a strategy where 
the agent knows the growth rate of each share between the first 
day and the last day of the examination. The agent simply 
invests all of its assets in one stock, the one with the highest 
growth rate, and holds it for the entire period. In this case, the 
return for each time step is equal to the growth rate of a better 
stock. 

Reinforcement learning has a good capacity for decision 
making, however, it has a major drawback in perception [6]. 
Contrarily, Deep Learning (DL) is strong in perception, but it 
has a weak capacity for making decisions [7]. Indeed, for this 
case study, traditional Machine Learning (ML) methods 
perform financial transactions by recognizing patterns from 
raw data, and in this context, it can be used to understand the 
rules of purchase, sale and execution [8]. Deep Learning, on 
the other hand, is even more effective insofar as there is a 
repetition of the reception of new information from the raw 
data. Therefore, Reinforcement Learning and Deep Learning 
in a way complete each other and their combination can then 
be used to solve the problem of perceptual decision making in 
complex systems [9]. Among the most well-known 
Reinforcement learning algorithms is DDPG [10]. It is an 
Actor-Critic algorithm designed to be used in environments 
with continuous action spaces. It is a model free off-policy and 
so as the name suggests, it is deterministic which means that 
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we have a network of policies which, under some observations 
of the environment, only results in the one that is considered 
to be the most appropriate action. 

In this paper, we investigate the effectiveness of DDPG to 
create a profitable strategy. We explore the potential of deep 
Reinforcement Learning in optimizing a Portfolio 
Management strategy in order to maximize the return on 
investment. Experiments show that the proposed algorithm 
achieves a higher rate of return compared to baseline strategies 
like “Buy And hold” or “Buy Best Stock”.  

 This document is organized as follows: Section 2 generally 
reviews some related work on RL and DRL. In section 3 we 
briefly introduce the stock market system, in section 4 we 
detail the main concepts related to portfolio optimization, we 
formulate the problem in section 5, in section 6, we present 
the MDP formulation, then we detail in section 7 the concept 
of deep reinforcement learning and the actor critic methods, 
we describe also the algorithm of deep deterministic policy 
gradient and we discuss the implementation of the model. In 
section 8, we present the results obtained and we conclude 
with some final remarks. 

II. RELATED WORK 

Reinforcement learning has been applied successfully in 
many fields such as: resource management [11], helicopter 
flight[12] and chemistry [13] among others. It has 
demonstrated effective performance on a variety of problems 
such as robotic control [14][15], the inverted pendulum [16], 
job scheduling, telecommunications, and backgammon [17]. 

However, although RL has enjoyed these successes over 
the past few decades, old approaches and previous theories 
[18] lacked evolution and were strictly limited to problems of 
rather old dimensions. In addition, we have recently witnessed 
the rise of deep learning [19][20][21], which relies on fairly 
powerful approximation properties of functions and learning 
representations of deep neural networks, and which has given 
us new tools to solve these dysfunctions. The notion of deep 
learning has made considerable progress in RL, notably 
through the use of deep learning algorithms within RL which 
defines the domain of Deep Reinforcement Learning (DRL) 
[22]. 

Among recent works in the field of DRL, there have been 
two exploits that have proven to be remarkable. The first that 
spawned the DRL revolution, which represented the 
development of an algorithm used to learn how to launch 
games like Atari 2600 [23] at a high level, directly from image 
pixels, thus providing means for solving the instability of 
function approximation techniques in Reinforcement 
Learning. A second considerable success consisted in the 
development of a hybrid DRL system, AlphaGo [24], which 
brought its victory over a human world champion in Go. 
Indeed, DRL algorithms have been previously employed and 
used in a field of problems, such as robotics [25], health 
[26][27], transportation [28] and video games [29][30]. 

Deep Reinforcement learning has also been applied to the 
field of financial markets in many different contexts. In [31], 
the authors proposed a new strategy for portfolio 
management. The method is based on the Deep Q-Network 
algorithm. First, they discretized the action space in order to 
adapt the DQN to stock market production. Then, in order to 
improve the recognition capacity of the algorithm, the authors 
opted for the combination of the dueling Q-net with the neural 

network. The results obtained after the tests show that the 
proposed method surpasses the ten other traditional strategies 
and that it is the least risky investment method. Another work 
[32] based on Q-learning proposed a new portfolio 
management framework which is composed of  a set of local 
agents and a global agent. The local agent is based on deep Q-
learning, double deep Q-learning and dueling double deep Q- 
learning and the global agent describes the global reward 
function. After testing the framework on a crypto portfolio 
consisting of four cryptocurrencies, it turned out that the 
proposed framework is a promising approach for dynamic 
portfolio optimization. Another strategy has been proposed in 
the work of [33] consisting in training an agent so that he can 
identify an optimal trading action using deep Q-learning. In 
order to super form trading, the proposed strategy is based on 
three functionalities which are as follows: The first is a 
mapping function whose objective is the transformation of an 
action found but unrealizable into an achievable action closest 
to the ideal action initially proposed. In order to derive a multi-
asset trading strategy, the authors [33] proposed as a second 
functionality to establish agent and Q network models. And 
for the third functionality, they designed an agent to simulate 
all the actions that can be done in each state and this to have a 
technique that aims to derive a well-suited multi-asset trading 
strategy. After performing the tests, the proposed approach 
was able to obtain better results than the reference strategies. 
As for the authors of [34], they proposed a new model-based 
RL architecture using an infused prediction module (IPM) and 
a behavior cloning module (BCM), extending the standard 
actor-critic algorithms. In addition, the authors have designed 
a back-testing engine which also allows transactions to be 
executed by interacting with the RL agent in real time. After 
performing the tests, the results obtained demonstrate that the 
proposed model is robust, profitable and risk sensitive, 
compared to basic trading strategies and model-free RL agents 
used in previous works. Another work [35] has addressed the 
main research problems linked to the optimization of financial 
portfolio management policies. The authors proposed to use 
deep RNNs (GRUs) and a policy gradient in order to find the 
optimal policy function. They presented in their paper a study 
of each type of RL approaches and their integration with the 
DL method while solving the policy optimization problem. 

III. STOCK MARKET 

The stock market is the main component of the capital 
market and one of the most important ways for public 
corporations to raise financing. The stock market's volatility is 
strongly linked to the economic market's success or recession. 

The mode of financing for public enterprises is capital. 
Public firms can generate idle funds by issuing stocks and 
bonds on the stock market to remedy the problem of a 
temporary capital deficit. 

Shares are one of the most easily accessible financial 
products for private investors. Personal assets will appreciate 
to some extent if they are held in appropriate stocks and 
managed properly. Stock trading is also the primary business 
of securities firms and investment banks. 

Stock trading and price prediction are all about predicting 
the future worth of a company's stock, which has been around 
since the beginning of the stock market. A good projection of 
stock prices in the future can bring in a lot of money. Many 
macro and micro elements, such as interrelated political and 
economic indicators, the supply-demand connection for 
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stocks, corporate operational circumstances, and so on, affect 
the stock market. As for portfolio management, it helps in 
making the decision on what to trade. This involves security 
analysis, risk, modeling, correlations, liquidity, etc.  More 
details about this process in the next section. 

IV. PORTFOLIO MANAGEMENT 

a) The process of Portfolio Management  

A portfolio is a collection of securities or a combination 

of assets put together with the owner's specific goals in mind. 

Commodities, currencies, futures or corporate debt, and so on 

are all examples of securities, and a portfolio is established 

when various assets are chosen and then integrated. The 

portfolio must be tailored to the investor's investing 

objectives in order to be most effective, which implies that 

the assets picked and assembled must coincide with the 

investor's goals. 

There are three basic steps to managing a portfolio: 

Investment policy: This step identifies the goals in 

terms of profitability, risk tolerance, degree of volatility, time 

horizon, as well as constraints such as tax considerations, the 

need for cash and income, and any other factors that may 

influence investment decisions. This stage influences the 

securities, actions, and assets that will be included in the 

portfolio, as well as the management style; everything else is 

influenced by this stage. 

 

Execution: Portfolio managers assess the risk and return 

of various asset classes to determine fund allocation in this 

stage. The manager uses a top-down analysis to consider 

current economic conditions including macroeconomic 

forecasts such as interest rates, GDP growth and inflation. 

This makes it possible to identify the asset classes that 

correspond to the investor's portfolio. Then, there’s bottom-

up analysis, which examines securities inside certain asset 

classes.  

 

Feedback: Over time, investors' preferences change, the 

risk and return of asset classes also changes, and as market 

prices of securities change, portfolio composition also 

changes. The manager must assess these characteristics and 

rebalance the portfolio. This process includes buying and/or 

selling securities to readjust the weighting to the desired 

percentages. Additionally, the portfolio manager should 

compare the performance of the portfolio to the benchmark 

and make any necessary changes. 

 

b) Types of Portfolio management 

Portfolio management strategies are diverse; however, 

they generally fall into four categories: 

 

Active Portfolio management. In this case, investors 

and portfolio managers assume that they can outperform the 

market by taking advantage in particular of market anomalies 

and will therefore aim to outperform a benchmark index, they 

must be able to buy securities or assets that are expected to 

do better than the market and to sell assets that are supposed 

to underperform the market. This implies that active 

managers must bear additional analysis costs and transaction 

costs that make active management expensive. Quantitative 

market analysis, extensive diversification, and a thorough 

understanding of the economic cycle are all required for this 

strategy. 

 

Passive Portfolio Management Investors who believe 

in the efficiency of the financial markets, i.e. they believe that 

the prices reflect at all times all the information available on 

the securities will opt for passive management, the objective 

of which is to replicate a reference index or a Benchmark by 

trying to limit transactions and management costs. Their 

management cost is among the lowest, because they do not 

use any strategy and their only function is to replicate an 

index. 

 

Discretionary Portfolio Management  is aimed at 

investors who have significant assets and wish to delegate 

day-to-day investment decisions based on a clearly defined 

investment policy. Discretionary management is a service 

whereby an individual gives a professional investment 

manager permission and the authority or discretion to act on 

their behalf proactively in light of changing investment 

markets, changes in geopolitical risks and changes in day-to-

day investment performance. 

 

Non-Discretionary Portfolio Management A non-

discretionary manager is nothing more than a financial 

adviser, his power of attorney is limited, he advises the 

investor on the best course of action. Although the advantages 

and disadvantages are clearly stated, the investor is free to 

choose his own way. It is only until the manager has received 

authorization to act on behalf of the investor that he acts. 

 

c) Investment risk profiles 

There are three primary types of investment risk profiles: 

conservative, balanced, and aggressive. 

 

Conservative risk profile is one in which the investor 

has a low risk tolerance and capacity, and is unable to take 

risks due to a large number of financial applications and a low 

income. As a result, he should allocate 0-10 percent of his 

assets to equity and a maximum of 90-100 percent of his 

assets to debt and cash. 

 

Balanced risk profile. This type of investor has a 

medium level of risk-taking capacity and tolerance; they can 

take on risk but not excessively owing to financial obligations 

and small income, and they can invest a maximum of 40% to 

60% in stock and 40% to 60% in debt or cash. 

 

Aggressive risk profile. This type of investor has a high 

level of risk tolerance and capacity. They may take large risks 

since their financial commitments are met, and they earn a lot 

of money and have a lot of money. These individuals can put 

90 to 100 percent of their money into equity and only 0 to 

10% in debt or cash. 

 

d) Basic Techniques for managing stock markets 

problems 

The basic techniques for managing stock markets 

problems are divided into two categories: The fundamental 

analysis and the technical analysis.  
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Fundamental analysis, according to fundamental 

analysis, economic forces influence prices, so we look into 

the economics of a company to see if it is cheap, costly, or 

the proper value. With fundamental analysis, we use existing 

data to estimate the value of a stock by taking the time to 

evaluate all of the available information, which can be in the 

form of quantitative or qualitative information and can impact 

the business economically. This information is used to 

construct ratios and metrics that measure the health, 

performance, and growth rates of a company. Future growth 

rates are forecasted using industry data and economic factors 

such as interest rates and retail expenditure. After evaluating 

numerous models and ratios, a fair value is determined. 

 

Technical analysis Technical analysis is a field that uses 

charts to analyze the movement of a financial market. The 

chart structure reflects all the information available to buyers 

and sellers. Unlike the fundamental analysis, the technical 

analysis is simply concerned with the price's evolution, not 

with the external factors that influence it. The curve on the 

chart is the trace left by the balance of power between the 

buyers and sellers. The curve rises when buying interests are 

dominant, and vice versa. Technical analysis allows to 

identify the moments when a market evolves in trend.  The 

technical analyst's task is to qualify the emergence of a trend 

as quickly as feasible until it reaches its exhaustion phase. In 

the past, there have been major price levels that have resulted 

in arbitrages and the collective psychology of investors is 

now known during market rises (greed) and declines (fear). 

Trends or geometric structures on the chart depict this 

collective psychology. These chart patterns have no 

predictive value but they do reflect market sentiment. They 

allow for the formulation of theories on its evolution. 

V. PROBLEM STATEMENT 

We wish through our work to manage the portfolio and 
this by distributing our investment in a number of shares 
according to the market. Our environment is defined as 
follows: 

Let N be the number of shares we are going to invest in. 
Our close / open relative price vector is defined as follows: 

𝑦𝑡 = [1,
𝑣1,𝑡,𝑐𝑙𝑜𝑠𝑒

𝑣1,𝑡,𝑜𝑝𝑒𝑛
 ,

𝑣2,𝑡,𝑐𝑙𝑜𝑠𝑒

𝑣2,𝑡,𝑜𝑝𝑒𝑛
 , . . . ,

𝑣𝑁,𝑡,𝑐𝑙𝑜𝑠𝑒

𝑣𝑁,𝑡,𝑜𝑝𝑒𝑛
]        (1) 

 

where  
𝑣𝑖,𝑡,𝑐𝑙𝑜𝑠𝑒

𝑣𝑖,𝑡,𝑜𝑝𝑒𝑛
  represents the relative price of stock 𝑖 at time 

stamp 𝑡. With 𝑦 [0] is the relative price of cash, which is 
always equal to 1. Our portfolio weight vector is defined as 
follows : 

𝑤𝑡 = [𝑤0,𝑡 , 𝑤1,𝑡 , … , 𝑤𝑁,𝑡]         (2) 

We note that  𝑤𝑖,𝑡 is the fraction of investment on stock 𝑖 at 

time stamp 𝑡 and  ∑ 𝑤𝑖,𝑡 = 1𝑁
𝑖=0 . 

With 𝑤0,𝑡 , the fraction of cash we have and therefore the profit 

after the timestamp 𝑇 is : 

𝑝𝑇 = ∏ 𝑦𝑡
𝑇
𝑡=1 .𝑤𝑡−1

                       (3) 

Note that 𝑤0=[1,0,⋯,0]. Let µ be the negotiation cost factor, 
the cost of negotiating each timestamp is: 

µ𝑡 = µ∑ |
𝑦𝑡⊙𝑤𝑡−1 

𝑦𝑡.𝑤𝑡−1
− 𝑤𝑡|                    (4) 

Then we have: 

𝑃𝑇 = ∏ (1 − µ𝑡)𝑦𝑡 . 𝑤𝑡−1
𝑇
𝑡=1                 (5) 

VI. MARKOV DECISION PROCESS FORMULATION  

We model our problem as a Partially Observable Markovian 

Decision Process (MDP) which generalizes MDP for 

planning under partial observability and when there exist 

multiple sources of uncertainty [36]. Besides the system's 

stochastic dynamics, there are also observation noises [37]. 

 

a) State and Action 

Our state 𝑠𝑡 is defined as 𝑜𝑡, with 𝑜𝑡  representing the 

observation of the timestamp 𝑡. Since the effect of historical 

data decreases over time, we will be content with the price of 

the historical and current news of the day in a fixed length 

window 𝑊. From where, 

 

𝑜𝑡 = [𝑣1,𝑡⃗⃗ ⃗⃗ ⃗⃗  , 𝑣2,𝑡⃗⃗ ⃗⃗ ⃗⃗   , … , 𝑣𝑁,𝑡,⃗⃗ ⃗⃗ ⃗⃗  ⃗]                         (6) 

with,    

𝑣i,𝑡⃗⃗ ⃗⃗  ⃗  =   

[
 
 
 
 

𝑣𝑖,𝑡 − 𝑤

𝑣𝑖,𝑡 − 𝑤 + 1
..
.

𝑣𝑖,𝑡− 1 ]
 
 
 
 

                              (7) 

The portfolio weight vector 𝑊𝑡 represents the action 𝑎𝑡. Our 

objective is to form a network of policies 𝜋𝜃(𝑎𝑡, 𝑜𝑡). 

 

b) State Transition 

We have no control over the market, so what we can get is 

price and timeliness i.e. state of observation. 

So, Instead of 𝑜𝑡−1 , 𝑜𝑡 is given by the dataset, this is 

because we collect the price history of various stocks. 

 

c) Reward 

We have the logarithm of the equation (3) instead of 

having the reward 0 at each timestamp and 𝑝𝑡  at the end:  

 

log 𝑝𝑡 = log∏ µ𝑡𝑦𝑡  . 𝑤𝑡−1
𝑇
𝑡=1 =  ∑ log (µ𝑡𝑦𝑡  . 𝑤𝑡−1)

𝑇
𝑡=1  (8) 

 

So, in order to avoid the sparse reward problem [38] where 

an environment rarely produces a useful reward signal, which 

seriously calls into question the way ordinary DRL tries to 

learn [38], we have log (µ𝑡𝑦𝑡  . 𝑤𝑡−1) which rewards each 

timestamp. 

 

VII. METHODOLOGY 

A. Reinforcement Learning 

Reinforcement Learning (RL) is a Machine Learning 
method in which agents tend to learn an optimal policy 
through trial and error [7]. By interacting with the 
environment, an RL agent is supposed to be diligent in 
succeeding in sequential tasks when making decisions. The 
Reinforcement Learning agents can interact with their 
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environments by observing the repercussions of their actions. 
They should be able to learn, to rectify, and to modify their 
own actions in response to the rewards received [7].  

An independent agent in the RL configuration, observes 
and supervises a state 𝑠𝑡 from its environment at time step 𝑡. 
This agent engages in interaction with the environment by 
taking an action in the state 𝑠𝑡. When taking an action, the 
agent and its environment transfer to a new state 𝑠𝑡+1, 
depending on the action chosen and the current state. The 
rewards provided by the environment determine the best 
sequence of actions. The environment also provides an 𝑟𝑡+1 
scalar reward to the agent in return each time it transitions to 
a new state. The agent's objective consists in assimilating a 
control strategy 𝑟 which maximizes the expected return (i.e. 
the cumulative, discounted reward). We consider a state, a 
policy – a mapping of observations into actions –; a better 
policy is one which maximizes the expected profitability in 
the entourage. To this end, Reinforcement Learning strives to 
provide a solution to the same problem as optimal control. On 
the other hand, what we take up as challenge in RL is that the 
agent is able to learn about the repercussions of actions in the 
environment by errors and by trials, since, a model of the state 
transition dynamics is not available to the agent. The 
information that the agent uses to update his knowledge is 
produced by each interaction with the produced environment. 
(see Figure 1). 

 

Fig. 1. Architecture of Reinforcement Learning 

B. Deep Learning 

Machine learning algorithms adjust the parameters of their 

calculations based on the examples given to them. This makes 

it possible to adapt their operations to the data provided. Deep 

learning allows computational models that are composed of 

multiple processing layers to learn representations of data with 

multiple levels of abstraction [39]. It is based on Artificial 

Neural Networks, a technique inspired by the theory of brain 

development and can be learned in the sense of three 

learnings: unsupervised learning, supervised learning and 

semi-supervised learning. 

The neural network structure consisting of Input, Output 

and Hidden layers.  

 

In addition, depending on the task of interest, there are 

specific architectures involved when training the model using 

these networks, we cite the Artificial Neural Networks 

(ANN), Deep Neural Networks (DNN), Recurrent Neural 

Networks (RNN) and Long Short Term Memory (LSTM).  

 

 

 

Fig. 2. The structure of a Deep Neural Network 

1) Artificial Neural Network (ANN) : An artificial neural 

network (ANN) [40]  is designed on the basis of the working 

mechanism of the human nervous system [40]. A neural 

network learns to perform a task by examining labeled training 

examples. It is made up of a number of data processing agents; 

that are called neurons and which receive signals from each 

other and pass them on to each other. A neuron takes 

information as input and develops outputs according to its 

internal activation function [42]. The parameters controlling 

the learning of ANNs are the number of hidden layers, the 

number of neurons per hidden layer. These two choices 

directly condition the number of parameters (of weight) to be 

estimated and therefore the complexity of the model. There is 

also, the maximum number of iterations, the maximum 

tolerated error and a possible term of ridge regularization 

(decay). We have also, the learning rate as well as a possible 

strategy for its evolution and the size of the sets or batches of 

observations considered at each iteration. For the 

computation, several activation functions can be used, such as: 

Sigmoid, Softmax, Rectified Linear unit… 
Artificial Neural Networks (ANNs) based on multiple 

layers hidden between the input and output layers [43][44] are 
called Deep Neural Network (DNNs). An example of DNN 
architecture is shown in figure 2. 

2) Recurrent Neural Networks (RNN) : Recurrent Neural 

Networks [45] , capture  information about sequences or time 

series data. They are particular networks, which make it 

possible to take into account the notion of sequence of 

observations.  
The new state of the recurrent neural network at time T is 

a function of its old state at time 𝑡 minus 1 and of the input at 
time which is 𝑋𝑡. This function is the basic idea of RNNs.     
𝑋𝑡  : is the entry at time step 𝑡 , 𝑆𝑡 : state at time step 𝑡 ,             
𝐹𝑤 : is the recursive function. 

𝑆𝑡 = 𝐹𝑤 (𝑆𝑡−1, 𝑋𝑡)  (9) 

 
Simple RNNs work with formula (9) and the recursive 

function used is a tanh. We multiply the input state X with 
weights 𝑊𝑥 and the previous state by 𝑊𝑠 then we go through 
an activation tanh to get the new state.  

 𝑆𝑡 =  𝑡𝑎𝑛ℎ (𝑊𝑠𝑆𝑡−1 + 𝑊𝑥𝑋𝑡)  (10) 
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𝑊𝑥 and 𝑊𝑠 are the weights. Now, to get the output vector 
we multiply the new state that is 𝑆𝑡  with 𝑊𝑦.  

  𝑌𝑡 = 𝑊𝑦𝑆𝑡    (11) 

 

3) Long Short Term Memory (LSTM) : Recurrent neural 

networks [45] are widely used in applications such as 

automated language processing. However, they show 

deficiency in learning when the sequences to be processed 

become too long [46]. As the gradient can become too small 

at the end of the chain. Long Short Term Memory [47] was 

introduced to solve  this problem thanks to their gate system. 

It is a variant of RNN and its blocks are known as memory 

cells with adaptive multiplicative gates.  The first gate of the 

LSTM is responsible of deciding which information to 

eliminate from the state of the cell which is carried out by a 

sigmoid layer and it is called the “forgot gate layer”. For the 

second gate called the “entry gate”, it decides what 

information can be stored from the current step and decides 

how much current information to transmit.  As for the output 

gate, it decides whether the contents of the cell should 

influence the output of the neuron. 

 

C. Deep Reinforcement Learning 

Tabular representations represent the most accessible tools 
for storing learned estimates like values, models, or policies, 
of which each pair of case actions is attached to a discrete 
estimate [48].  When estimates are represented discretely, 
each additional feature tracked in the state leads to an 
exponential growth in the number of state-action pair values 
that must be stored [48]. In the literature, this dysfunction is 
generally referred to as the “dimensionality curse”, a term that 
was originally coined by Bellman [49]. 

Usually in simple environments, this is rarely a concern, 
however it can lead to insoluble problems in real life 
algorithms, because of computational and / or memory 
constraints which remain essential as parameters. It is possible 
to obtain useful policies over a large state action space, 
however, it can take an unacceptable amount of time. Several 
fields of everyday reality include spaces of continuous state 
and / or action; the latter are presumed to remain discretized 
in various cases. 

On the other hand, interesting steps of discretization are 
supposed to limit certain performances which one can 
concretize in a domain, whereas meticulous discretization 
steps can result in a considerable state reaction interval where 
it is impractical to obtain a sufficient sample size dependent 
on each state-action pair [48]. 

Alternatively, the function approximation can be 
employed for the purpose of generalization by states and / or 
actions, whereby the function approximation is employed to 
retrieve and store certain estimates [48]. It turns out that the 
approximation of functions remains a fairly active area of 
research in RL, providing a way to orient continuous state and 
/ or action spaces, to minimize the explosion of state space, 
action, and then generalize the previous experience to state-
action pairs that were previously invisible [48]. 

 

 

 

 

Fig. 3. Architecture of Reinforcement Learning and Deep Reinforcement 

Learning 

Neural networks are being used on a recurring basis to 
implement function approximation. Several works have 
employed deep neural networks as a means of approximating 
functions; this emerging model is known as Deep 
Reinforcement Learning (DRL) [22]. (See Fig. 3). 

Among the most widely used reinforcement learning 

techniques, we find: Actor-critic methods. In the next two 

sections, we will introduce the concept of these methods as 

well as the Deep Deterministic Policy Gradient (DDPG) 

algorithm which is based on them. 

D. Actor-critic Methods 

Actor-critic methods are methods that combine value-
based and policy-based into a single algorithm [50]. As their 
name suggests, they use two neural networks: An actor 
(policy-based) and a critic (value-based). 

The objective of the actor 𝜋𝜃 ∶ 𝑠 ⟶ 𝐴 is to control the 
behavior and to get directly close to the policy of the agent, it 
is indeed a mathematical function. The policy is just a 
probability distribution over the set of actions where we take 
a state as input and produce a selection probability of each 
action. 

On the other hand, the critic 𝑄φ
𝜋 ∶ 𝑆 × A ⟶  𝑅 aims to 

measure the quality of the action taken, in other words, it is 
used to approximate the value function. The critic acts like any 
other critic, telling the actor how good or bad each action is, 
depending on the value of the resulting state.  

The two networks are working together to find out how to best 
act in the environment. The actor selects the action, the critic 
assesses the condition, and then the result is compared to the 
environmental rewards. Over time, the critic becomes more 
precise in estimating state values, allowing the actor to select 
the action that leads to those states from a practical point of 
view.  
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Actor-critic methods belong to the class of algorithms 
called Temporal Difference Learning [51]. The basic idea of 
TD methods is that the learning is based on the difference 
between temporally successive predictions [51], so we will 
update the weights of our DNN at each time step. This is a 
way of saying that we are going to estimate the difference in 
values of the successive states that is to say of the states 
separated by a time step. As with any DL problem, we 
calculate the cost function; in particular, we have 2 cost 
functions, one to update our critic and the other to update our 
actor. Figure 4 represents the architecture of the Actor-critic 
methods.  

Fig.5.  Architecture of Actor-Critic algorithm 

 

Actor updates are done always in the same way:  

𝜃 ←  𝜃 +  𝛼∇𝜃 𝑙𝑜𝑔𝜋𝜃(𝑎𝑡|𝑠𝑡)𝐺𝑡                  (12) 

where 𝐺𝑡 is the evaluation of long-term returned by the critic 

for 𝑠𝑡.  Critic updates are done to evaluate the current policy  

𝑤 ← 𝑤 +  𝛼𝛿∇𝜃𝑉𝑊(𝑎𝑡|𝑠𝑡)                         (13) 

 

where 𝛿 is the estimated error in evaluating the 𝑠 state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E. Deep Deterministic Policy Gradient 

Deep Deterministic Policy Gradient (DDPG) [10] is a 
model-free off-policy algorithm for learning continuous 
actions. In particular, we use a replay memory where, instead 
of just learning from the most recent state transition the agent 
has experienced, it will keep track of the sum total of its 
experiences, then randomly sample that memory to each time 
step to get a batch of memories to update the weight of its deep 
neural network. The other innovation is the use of target 
networks [10]. The architecture of the DDPG algorithm is 
shown in figure 5.  

 DDPG uses the Actor-Critic structure which means that it 
has two networks. For the network of actors, it takes 
observation and gives action. For the critical network, it takes 
the observation and the corresponding action and produces the 
value Q. For the deterministic part, this comes from the fact 
that we have a network of policies which, under a certain 
observation of the environment, only gives the one which is 
considered to be the most appropriate action. 

 Now, this poses a problem called the exploration-
exploitation dilemma [7]  and it is present in all Reinforcement 
Learning problems, it is a fundamental concept in the field. 
The basic idea is that our agent tries to build a model of the 
world. When the agent takes an action out of the optimum it 
is called exploration and when it takes the optimal action, it is 
called exploitation because it is simply exploiting the best 
known action and the solution here, is to take the output of our 
current network and apply some extra noise to it.  

So, we can break down the algorithm into the following: 
Experience replay, Actor and critic network updates, target 
network updates and exploration. 

As used in many RL algorithms, DDPG uses a replay 
buffer to sample the experience in order to update the 
parameters of the neural network. During each trajectory 
deployment, we save all experience tuples (state, action, 
reward, next_state) and store them in a cache of finite size 
“replay buffer”. Then, when updating the parameters of the 
neural network, the experiences inside this recovery memory 
are randomly selected, which avoids introducing a bias during 
learning. 

 

 

Fig.4.  Architecture of Deep Deterministic Policy Gradient 
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1) Actor (Policy) & Critic (Value) Network Updates 

The network of values is updated in the same way as in Q-
learning. The updated Q-value is obtained by the Bellman 
equation: 

𝑦𝑖 = 𝑟𝑖 +  𝛾𝑄′(𝑠𝑖+1, µ
′(𝑠𝑖+1|𝜃

µ′
) | 𝜃𝑄′

 )        (14) 

However, in DDPG, the calculation of Q values for the 
next state is done with the target value network and the target 
strategy network. Next, we minimize the mean square loss 
between the updated Q-value and the original Q-value : 

𝐿𝑜𝑠𝑠 =  
1

𝑁
 ∑ (𝑦𝑖𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖|𝜃

𝑄))2                 (15) 

For the political function, our objective is to maximize the 
expected return : 

𝐽(𝜃) = 𝐸[𝑄(𝑠, 𝑎) | 𝑠 = 𝑠𝑡,𝑎𝑡=µ(𝑠𝑡) ]                   (16) 

To calculate the policy loss, we take the derivative of the 
objective function with respect to the font parameter. 
Knowing that the function of actor (political) is differentiable, 
we must therefore apply the chain rule. 

∇𝜃µ𝐽(𝜃) ≈  ∇𝑎Q(s, a) ∇𝜃µµ(𝑠|𝜃µ)                 (17) 

But as we update the policy in a non-political way with 
lots of experience, we take the average of the sum of the 
gradients calculated from the mini-batch: 

∇𝜃µ𝐽 ≈

             
1

𝑁
 ∑ ∇𝑎𝑄(𝑠, 𝑎 |𝜃𝑄

ⅈ
) | 𝑠=𝑠𝑖 ,   𝑎=µ(𝑠𝑖)

 ∇𝜃µ µ(𝑠|𝜃µ)|𝑠𝑖
(18) 

 

2) Target network update 

We make a copy of the parameters of the target network 
and slowly follow them with those of the learned networks via 
“software updates”, as illustrated below:     

               𝜃𝑄′
 ← 𝜏𝜃𝑄 + (1 −  𝜏)𝜃𝑄′

 

𝜃µ′  ←  𝜏𝜃µ + (1 −  𝜏)𝜃µ′                        (19) 

  where 𝜏 ≪ 1 

3) Exploration  

In reinforcement learning for discrete action spaces, 
exploration is done via the probabilistic selection of a random 
action such as epsilon-greedy [52] or Boltzmann exploration. 
For continuous action spaces, exploration is done by adding 
noise to the action itself. Authors in [53] add noise to the 
output of the action : 

 

 

 

 

 

 

 

 

 

 

 

 

 

µ′(𝑠𝑡) = µ(𝑠𝑡  | 𝜃𝑡
µ
) + 𝑁                      (20) 

 
The pseudo-code is described in the section above. 

 

VIII. EXPERIMENTS AND RESULTS 

1) Dataset:  

 
In this work, we assess the performance of the Deep 
Deterministic Policy Gradients on Portfolio Management. We 
have formed the model with 15 Stock price data (AAPL, BAC,  

Date Time AAPL_open AAPL_High AAPL_Low AAPL_Close AAPL_Vol 

2018-01-02 173100 170.18 170.19 169.88 169.94 17654 

2018-01-02 173200 169.90 169.93 169.67 169.69 8200 

2018-01-02 173300 169.67 169.88 169.58 169.58 9380 

2018-01-02 173400 169.46 169.46 169.27 169.33 5348 

2018-01-02 173500 169.45 169.60 169.44 169.59 9700 

Algorithm. Deep Deterministic Policy Gradient 

Randomly initialize critic network Q(s, a|𝜃𝑄  ) and actor µ(s,a|𝜃µ ) 
with weights 𝜃𝑄  and 𝜃µ 

Initialize target network Q’ and µ’ with weights 𝜃𝑄′ ← 𝜃𝑄, 𝜃µ′
←

 𝜃µ 

Initialize replay buffer R 

For episode = 1, M do  

 Initialize a random process N for action exploration 

 Receive initial observation state 𝑠1 

 For t = 1, T do 

  Select action 𝑎𝑡 = µ(𝑠𝑡 | 𝜃
µ) + 𝑁𝑡 according to the  

               current policy and exploration noise 

  Execute action 𝑎𝑡 and observe reward 𝑟𝑡  and observe 
new  state 𝑠𝑡+1 
  Store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡  , 𝑠𝑡+1) in R 

  Set 𝑠𝑡+1 =  𝑠𝑡 

  Sample a random minibatch of N transitions 
(𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖+1) from R 

  Set 𝑦𝑖 = 𝑟𝑖 +  𝛾𝑄′(𝑠𝑖+1, µ
′(𝑠𝑖+1|𝜃

µ′) | 𝜃𝑄′
 ) 

  Update critic by minimizing the loss: 

                𝐿 =  
1

𝑁
 ∑ (𝑦𝑖𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖|𝜃

𝑄))2 

  Update the actor policy using the sampled policy 
gradient: 

𝛻𝜃µ𝐽 ≈  
1

𝑁
 ∑𝛻𝑎𝑄(𝑠, 𝑎 |𝜃𝑄

𝑖

) | 𝑠=𝑠𝑖 ,   𝑎=µ(𝑠𝑖) 𝛻𝜃µ  µ(𝑠|𝜃µ)|𝑠𝑖
 

  Update the target networks: 

𝜃𝑄′
 ← 𝜏𝜃𝑄 + (1 −  𝜏)𝜃𝑄′

 

𝜃µ′  ←  𝜏𝜃µ + (1 −  𝜏)𝜃µ′ 
 End for 

End for 

TABLE I.  EXAMPLE OF RAW DATA FOR THE AAPL STOCK 
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BA, GE, GOOG, JNJ, KO, MA, MRK, MSFT, NVDA, PFE, 
SBUX, T, XOM) from 2018/01/01 to 2018/10/29, recorded in 
minutes with open, close, high, low, column features. Table 1 
gives an example of raw data from the AAPL Stock Price. 

2) Parameter settings and results :  

 
We use the algorithm designed for environments with 

continuous action spaces which is the DDPG, in order to learn 
the policy network 𝜋𝜃(𝑎𝑡, 𝑠𝑡). The configurations are as 
follows :  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• The Critic Network: Refers to the value function. 

• The Actor Network: which designates the network of 
policies. 

• Exploration noise: Ornstein-Uhlenbeck with zero 
mean, 0.3 sigma and 0.15 theta. 

• We train the models with different settings in 1500 
episodes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) : DDPG results for the month of May  

 

    (b) : DDPG results for the month of June 

 

   (c) : DDPG results for the month of July 

 

     (d) : DDPG results for the month of August 

 

  (e ) : DDPG results for the month of September 

 

    (f) : DDPG results for the month of October 

Fig. 6.  DDPG result : Portfolio value vs market value for the six months on the 15 Stocks : May, June, July, August, September and 
October 
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 As for the basic parameters : the stock contains the cash 
position, the long position of 15 stocks and the short position 
of 15 stocks, the stock price data is observed every minute, but 
the action is done only every 7 minutes.  In addition to the 
original (s, a, r, s'), other state-action pairs of "inferred steps" 
were also collected and stored in the replay buffer at each step. 

 We have normalized the historical price instead of using 
the open, high, low and close gross price so that whatever the 
actual price of the historical prices is, they are going to be in 
the same scale. The historical price is normalized as:                                   
(closeopen - 1) × scale,  and we heuristically set the scale 
factor to 100. 

For building our learning model we adopted a recurrent 
Long short-term memory network (LSTM) to solve the 
portfolio management problem which gave promising results. 

The market value is obtained by equally distributing the 
investment to all the stocks.  Figure 6 represents the value of 
the portfolio (Orange) versus the market value (Blue) during 
the last four months of testing. The figure shows that the 
model only buys and sells with a very small portion of the 
portfolio, it hasn't changed positions very often during the 
month.  

 We used the data from the previous month to build the RL 
model in a time series rolling diagram and we tested it over 
the following month. As for the results, the model achieved a 
rate of return of 14% for the selected period compared to a of 
return of 5.6% using a “Uniform Buy and Hold” strategy of  
the 15 stocks and maintaining a rate of return of -16.8% using 
the “Buy Best Stock” strategy in the last month. 

 

IX. CONCLUSION  

In this article, we have explored the Deep Deterministic 
Policy Gradient method and investigated its efficiency when 
applied to stock trading as a controller. Our model was able to 
achieve a higher rate of return compared to baseline strategies 
which are “Buy And hold” or “Best Stock”. 

Although stock trading with agents, through 
Reinforcement Learning, has shown some efficiency, it is not 
yet reliable as it sometimes makes mistakes and loses money.  

The results obtained can be improved in several ways. For 
instance, we would like to test Reinforcement Learning 
algorithms on live trading platforms rather than historical data.  

We could also select the most predictive characteristics by 
adjusting the model with various hyper-parameters. Finally, 
we could compare different Reinforcement Learning 
algorithms under similar conditions and data sources. 
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