

Deep Deterministic Policy Gradient based portfolio

management system

Firdaous Khemlichi

SIGER Laboratory

Sidi Mohamed Ben Abdellah

University

Fez, Morocco

firdaous.khemlichi@gmail.com

Hiba Chougrad

SIGER Laboratory

Sidi Mohamed Ben Abdellah

University

Fez, Morocco

chougrad.hiba@gmail.com

Youness Idrissi Khamlichi

SIGER Laboratory

Sidi Mohamed Ben Abdellah

University

Fez, Morocco

youness.khamlichi@usmba.ac.ma

Abstract— The Deep Reinforcement Learning Process

(DRL) has made considerable progress since its inception

towards the production of various independent systems.

Nowadays, deep learning gives Reinforcement Learning (RL)

the ability to conform to several dysfunctions that were

previously difficult, if not impossible to resolve. In this paper,

we explore the power of Deep Reinforcement Learning in order

to solve the problem of portfolio management which is a process

that allows the selection, prioritization and management of

funds by following a defined policy. Our objective is to obtain

an optimal strategy to maximize the expected return while

minimizing the costs. To do this, we use the Deep Deterministic

Policy Gradient which is an off-policy algorithm adapted for

environments with continuous action spaces. The obtained

results demonstrate that the model achieves a higher rate of

return than the strategy of “Uniform Buy and Hold” stocks and

the strategy of “Buy Best Stock in last month”.

Keywords—Portfolio Management, Reinforcement learning,

Deep Learning, Deep Deterministic Policy Gradient

I. INTRODUCTION

The financial market is an environment known for its
complex composition. It is characterized by uncertain and
changing information, dynamic opportunities, multiple goals
and strategic considerations, which make it a system for which
it is difficult to design an optimal and profitable strategy that
maximizes returns while avoiding risks [1]. Reinforcement
Learning can help build such decision systems. It is based on
agents who tend to obtain an optimal policy through trial and
error by interacting directly with the environment [2]. In this
paper, we adopt this type of learning to find the best possible
behavior for Portfolio management.

Portfolio management is the decision making process of
continuously reallocating an amount of funds into a number
of different financial investment products, aiming to
maximize the return while restraining the risk [3][4]. To
analyze the allocation, risk and return of a given portfolio,

different benchmarks can be used. In this work, we will
exploit two benchmarks which are: “Uniform Buy and Hold”
and “Buy Best Stock”.

“Uniform Buy And Hold” [5], also called market strategy
refers to a passive investment strategy in which an investor
buys carefully selected stocks and holds them for a long time,
regardless of market fluctuations. This strategy is based,
among other things, on the assumption that the economy will
continue to grow over the long term and that earnings and
stock prices will continue to rise. This allows the long-term
investor to build a high-performance and balanced portfolio
while devoting very little management time to it.

As for the “Buy Best Stock” [5], this is a strategy where
the agent knows the growth rate of each share between the first
day and the last day of the examination. The agent simply
invests all of its assets in one stock, the one with the highest
growth rate, and holds it for the entire period. In this case, the
return for each time step is equal to the growth rate of a better
stock.

Reinforcement learning has a good capacity for decision
making, however, it has a major drawback in perception [6].
Contrarily, Deep Learning (DL) is strong in perception, but it
has a weak capacity for making decisions [7]. Indeed, for this
case study, traditional Machine Learning (ML) methods
perform financial transactions by recognizing patterns from
raw data, and in this context, it can be used to understand the
rules of purchase, sale and execution [8]. Deep Learning, on
the other hand, is even more effective insofar as there is a
repetition of the reception of new information from the raw
data. Therefore, Reinforcement Learning and Deep Learning
in a way complete each other and their combination can then
be used to solve the problem of perceptual decision making in
complex systems [9]. Among the most well-known
Reinforcement learning algorithms is DDPG [10]. It is an
Actor-Critic algorithm designed to be used in environments
with continuous action spaces. It is a model free off-policy and
so as the name suggests, it is deterministic which means that

Safae Elhaj Ben Ali

SIGER Laboratory

Sidi Mohamed Ben Abdellah

University

Fez, Morocco

safae.elhajbenali@usmba.ac.ma

Abdessamad El Boushaki

SIGER Laboratory

Sidi Mohamed Ben Abdellah

University

Fez, Morocco

abdessamad.elboushaki@gmail.com

Special Issue on Machine Learning and Natural Language Processing – iJIST, ISSN : 2550-5114
 Vol. 6 - No. 3 - September 2022

http://innove.org/ijist/ 29

we have a network of policies which, under some observations
of the environment, only results in the one that is considered
to be the most appropriate action.

In this paper, we investigate the effectiveness of DDPG to
create a profitable strategy. We explore the potential of deep
Reinforcement Learning in optimizing a Portfolio
Management strategy in order to maximize the return on
investment. Experiments show that the proposed algorithm
achieves a higher rate of return compared to baseline strategies
like “Buy And hold” or “Buy Best Stock”.

 This document is organized as follows: Section 2 generally
reviews some related work on RL and DRL. In section 3 we
briefly introduce the stock market system, in section 4 we
detail the main concepts related to portfolio optimization, we
formulate the problem in section 5, in section 6, we present
the MDP formulation, then we detail in section 7 the concept
of deep reinforcement learning and the actor critic methods,
we describe also the algorithm of deep deterministic policy
gradient and we discuss the implementation of the model. In
section 8, we present the results obtained and we conclude
with some final remarks.

II. RELATED WORK

Reinforcement learning has been applied successfully in
many fields such as: resource management [11], helicopter
flight[12] and chemistry [13] among others. It has
demonstrated effective performance on a variety of problems
such as robotic control [14][15], the inverted pendulum [16],
job scheduling, telecommunications, and backgammon [17].

However, although RL has enjoyed these successes over
the past few decades, old approaches and previous theories
[18] lacked evolution and were strictly limited to problems of
rather old dimensions. In addition, we have recently witnessed
the rise of deep learning [19][20][21], which relies on fairly
powerful approximation properties of functions and learning
representations of deep neural networks, and which has given
us new tools to solve these dysfunctions. The notion of deep
learning has made considerable progress in RL, notably
through the use of deep learning algorithms within RL which
defines the domain of Deep Reinforcement Learning (DRL)
[22].

Among recent works in the field of DRL, there have been
two exploits that have proven to be remarkable. The first that
spawned the DRL revolution, which represented the
development of an algorithm used to learn how to launch
games like Atari 2600 [23] at a high level, directly from image
pixels, thus providing means for solving the instability of
function approximation techniques in Reinforcement
Learning. A second considerable success consisted in the
development of a hybrid DRL system, AlphaGo [24], which
brought its victory over a human world champion in Go.
Indeed, DRL algorithms have been previously employed and
used in a field of problems, such as robotics [25], health
[26][27], transportation [28] and video games [29][30].

Deep Reinforcement learning has also been applied to the
field of financial markets in many different contexts. In [31],
the authors proposed a new strategy for portfolio
management. The method is based on the Deep Q-Network
algorithm. First, they discretized the action space in order to
adapt the DQN to stock market production. Then, in order to
improve the recognition capacity of the algorithm, the authors
opted for the combination of the dueling Q-net with the neural

network. The results obtained after the tests show that the
proposed method surpasses the ten other traditional strategies
and that it is the least risky investment method. Another work
[32] based on Q-learning proposed a new portfolio
management framework which is composed of a set of local
agents and a global agent. The local agent is based on deep Q-
learning, double deep Q-learning and dueling double deep Q-
learning and the global agent describes the global reward
function. After testing the framework on a crypto portfolio
consisting of four cryptocurrencies, it turned out that the
proposed framework is a promising approach for dynamic
portfolio optimization. Another strategy has been proposed in
the work of [33] consisting in training an agent so that he can
identify an optimal trading action using deep Q-learning. In
order to super form trading, the proposed strategy is based on
three functionalities which are as follows: The first is a
mapping function whose objective is the transformation of an
action found but unrealizable into an achievable action closest
to the ideal action initially proposed. In order to derive a multi-
asset trading strategy, the authors [33] proposed as a second
functionality to establish agent and Q network models. And
for the third functionality, they designed an agent to simulate
all the actions that can be done in each state and this to have a
technique that aims to derive a well-suited multi-asset trading
strategy. After performing the tests, the proposed approach
was able to obtain better results than the reference strategies.
As for the authors of [34], they proposed a new model-based
RL architecture using an infused prediction module (IPM) and
a behavior cloning module (BCM), extending the standard
actor-critic algorithms. In addition, the authors have designed
a back-testing engine which also allows transactions to be
executed by interacting with the RL agent in real time. After
performing the tests, the results obtained demonstrate that the
proposed model is robust, profitable and risk sensitive,
compared to basic trading strategies and model-free RL agents
used in previous works. Another work [35] has addressed the
main research problems linked to the optimization of financial
portfolio management policies. The authors proposed to use
deep RNNs (GRUs) and a policy gradient in order to find the
optimal policy function. They presented in their paper a study
of each type of RL approaches and their integration with the
DL method while solving the policy optimization problem.

III. STOCK MARKET

The stock market is the main component of the capital
market and one of the most important ways for public
corporations to raise financing. The stock market's volatility is
strongly linked to the economic market's success or recession.

The mode of financing for public enterprises is capital.
Public firms can generate idle funds by issuing stocks and
bonds on the stock market to remedy the problem of a
temporary capital deficit.

Shares are one of the most easily accessible financial
products for private investors. Personal assets will appreciate
to some extent if they are held in appropriate stocks and
managed properly. Stock trading is also the primary business
of securities firms and investment banks.

Stock trading and price prediction are all about predicting
the future worth of a company's stock, which has been around
since the beginning of the stock market. A good projection of
stock prices in the future can bring in a lot of money. Many
macro and micro elements, such as interrelated political and
economic indicators, the supply-demand connection for

Special Issue on Machine Learning and Natural Language Processing – iJIST, ISSN : 2550-5114
 Vol. 6 - No. 3 - September 2022

http://innove.org/ijist/ 30

stocks, corporate operational circumstances, and so on, affect
the stock market. As for portfolio management, it helps in
making the decision on what to trade. This involves security
analysis, risk, modeling, correlations, liquidity, etc. More
details about this process in the next section.

IV. PORTFOLIO MANAGEMENT

a) The process of Portfolio Management

A portfolio is a collection of securities or a combination

of assets put together with the owner's specific goals in mind.

Commodities, currencies, futures or corporate debt, and so on

are all examples of securities, and a portfolio is established

when various assets are chosen and then integrated. The

portfolio must be tailored to the investor's investing

objectives in order to be most effective, which implies that

the assets picked and assembled must coincide with the

investor's goals.

There are three basic steps to managing a portfolio:

Investment policy: This step identifies the goals in

terms of profitability, risk tolerance, degree of volatility, time

horizon, as well as constraints such as tax considerations, the

need for cash and income, and any other factors that may

influence investment decisions. This stage influences the

securities, actions, and assets that will be included in the

portfolio, as well as the management style; everything else is

influenced by this stage.

Execution: Portfolio managers assess the risk and return

of various asset classes to determine fund allocation in this

stage. The manager uses a top-down analysis to consider

current economic conditions including macroeconomic

forecasts such as interest rates, GDP growth and inflation.

This makes it possible to identify the asset classes that

correspond to the investor's portfolio. Then, there’s bottom-

up analysis, which examines securities inside certain asset

classes.

Feedback: Over time, investors' preferences change, the

risk and return of asset classes also changes, and as market

prices of securities change, portfolio composition also

changes. The manager must assess these characteristics and

rebalance the portfolio. This process includes buying and/or

selling securities to readjust the weighting to the desired

percentages. Additionally, the portfolio manager should

compare the performance of the portfolio to the benchmark

and make any necessary changes.

b) Types of Portfolio management

Portfolio management strategies are diverse; however,

they generally fall into four categories:

Active Portfolio management. In this case, investors

and portfolio managers assume that they can outperform the

market by taking advantage in particular of market anomalies

and will therefore aim to outperform a benchmark index, they

must be able to buy securities or assets that are expected to

do better than the market and to sell assets that are supposed

to underperform the market. This implies that active

managers must bear additional analysis costs and transaction

costs that make active management expensive. Quantitative

market analysis, extensive diversification, and a thorough

understanding of the economic cycle are all required for this

strategy.

Passive Portfolio Management Investors who believe

in the efficiency of the financial markets, i.e. they believe that

the prices reflect at all times all the information available on

the securities will opt for passive management, the objective

of which is to replicate a reference index or a Benchmark by

trying to limit transactions and management costs. Their

management cost is among the lowest, because they do not

use any strategy and their only function is to replicate an

index.

Discretionary Portfolio Management is aimed at

investors who have significant assets and wish to delegate

day-to-day investment decisions based on a clearly defined

investment policy. Discretionary management is a service

whereby an individual gives a professional investment

manager permission and the authority or discretion to act on

their behalf proactively in light of changing investment

markets, changes in geopolitical risks and changes in day-to-

day investment performance.

Non-Discretionary Portfolio Management A non-

discretionary manager is nothing more than a financial

adviser, his power of attorney is limited, he advises the

investor on the best course of action. Although the advantages

and disadvantages are clearly stated, the investor is free to

choose his own way. It is only until the manager has received

authorization to act on behalf of the investor that he acts.

c) Investment risk profiles

There are three primary types of investment risk profiles:

conservative, balanced, and aggressive.

Conservative risk profile is one in which the investor

has a low risk tolerance and capacity, and is unable to take

risks due to a large number of financial applications and a low

income. As a result, he should allocate 0-10 percent of his

assets to equity and a maximum of 90-100 percent of his

assets to debt and cash.

Balanced risk profile. This type of investor has a

medium level of risk-taking capacity and tolerance; they can

take on risk but not excessively owing to financial obligations

and small income, and they can invest a maximum of 40% to

60% in stock and 40% to 60% in debt or cash.

Aggressive risk profile. This type of investor has a high

level of risk tolerance and capacity. They may take large risks

since their financial commitments are met, and they earn a lot

of money and have a lot of money. These individuals can put

90 to 100 percent of their money into equity and only 0 to

10% in debt or cash.

d) Basic Techniques for managing stock markets

problems

The basic techniques for managing stock markets

problems are divided into two categories: The fundamental

analysis and the technical analysis.

Special Issue on Machine Learning and Natural Language Processing – iJIST, ISSN : 2550-5114
 Vol. 6 - No. 3 - September 2022

http://innove.org/ijist/ 31

Fundamental analysis, according to fundamental

analysis, economic forces influence prices, so we look into

the economics of a company to see if it is cheap, costly, or

the proper value. With fundamental analysis, we use existing

data to estimate the value of a stock by taking the time to

evaluate all of the available information, which can be in the

form of quantitative or qualitative information and can impact

the business economically. This information is used to

construct ratios and metrics that measure the health,

performance, and growth rates of a company. Future growth

rates are forecasted using industry data and economic factors

such as interest rates and retail expenditure. After evaluating

numerous models and ratios, a fair value is determined.

Technical analysis Technical analysis is a field that uses

charts to analyze the movement of a financial market. The

chart structure reflects all the information available to buyers

and sellers. Unlike the fundamental analysis, the technical

analysis is simply concerned with the price's evolution, not

with the external factors that influence it. The curve on the

chart is the trace left by the balance of power between the

buyers and sellers. The curve rises when buying interests are

dominant, and vice versa. Technical analysis allows to

identify the moments when a market evolves in trend. The

technical analyst's task is to qualify the emergence of a trend

as quickly as feasible until it reaches its exhaustion phase. In

the past, there have been major price levels that have resulted

in arbitrages and the collective psychology of investors is

now known during market rises (greed) and declines (fear).

Trends or geometric structures on the chart depict this

collective psychology. These chart patterns have no

predictive value but they do reflect market sentiment. They

allow for the formulation of theories on its evolution.

V. PROBLEM STATEMENT

We wish through our work to manage the portfolio and
this by distributing our investment in a number of shares
according to the market. Our environment is defined as
follows:

Let N be the number of shares we are going to invest in.
Our close / open relative price vector is defined as follows:

𝑦𝑡 = [1,
𝑣1,𝑡,𝑐𝑙𝑜𝑠𝑒

𝑣1,𝑡,𝑜𝑝𝑒𝑛
 ,

𝑣2,𝑡,𝑐𝑙𝑜𝑠𝑒

𝑣2,𝑡,𝑜𝑝𝑒𝑛
 , . . . ,

𝑣𝑁,𝑡,𝑐𝑙𝑜𝑠𝑒

𝑣𝑁,𝑡,𝑜𝑝𝑒𝑛
] (1)

where
𝑣𝑖,𝑡,𝑐𝑙𝑜𝑠𝑒

𝑣𝑖,𝑡,𝑜𝑝𝑒𝑛
 represents the relative price of stock 𝑖 at time

stamp 𝑡. With 𝑦 [0] is the relative price of cash, which is
always equal to 1. Our portfolio weight vector is defined as
follows :

𝑤𝑡 = [𝑤0,𝑡 , 𝑤1,𝑡 , … , 𝑤𝑁,𝑡] (2)

We note that 𝑤𝑖,𝑡 is the fraction of investment on stock 𝑖 at

time stamp 𝑡 and ∑ 𝑤𝑖,𝑡 = 1𝑁
𝑖=0 .

With 𝑤0,𝑡 , the fraction of cash we have and therefore the profit

after the timestamp 𝑇 is :

𝑝𝑇 = ∏ 𝑦𝑡
𝑇
𝑡=1 .𝑤𝑡−1

 (3)

Note that 𝑤0=[1,0,⋯,0]. Let µ be the negotiation cost factor,
the cost of negotiating each timestamp is:

µ𝑡 = µ∑ |
𝑦𝑡⊙𝑤𝑡−1

𝑦𝑡.𝑤𝑡−1
− 𝑤𝑡| (4)

Then we have:

𝑃𝑇 = ∏ (1 − µ𝑡)𝑦𝑡 . 𝑤𝑡−1
𝑇
𝑡=1 (5)

VI. MARKOV DECISION PROCESS FORMULATION

We model our problem as a Partially Observable Markovian

Decision Process (MDP) which generalizes MDP for

planning under partial observability and when there exist

multiple sources of uncertainty [36]. Besides the system's

stochastic dynamics, there are also observation noises [37].

a) State and Action

Our state 𝑠𝑡 is defined as 𝑜𝑡, with 𝑜𝑡 representing the

observation of the timestamp 𝑡. Since the effect of historical

data decreases over time, we will be content with the price of

the historical and current news of the day in a fixed length

window 𝑊. From where,

𝑜𝑡 = [𝑣1,𝑡⃗⃗ ⃗⃗ ⃗⃗ , 𝑣2,𝑡⃗⃗ ⃗⃗ ⃗⃗ , … , 𝑣𝑁,𝑡,⃗⃗ ⃗⃗ ⃗⃗ ⃗] (6)

with,

𝑣i,𝑡⃗⃗ ⃗⃗ ⃗ =

[

𝑣𝑖,𝑡 − 𝑤

𝑣𝑖,𝑡 − 𝑤 + 1
..
.

𝑣𝑖,𝑡− 1]

 (7)

The portfolio weight vector 𝑊𝑡 represents the action 𝑎𝑡. Our

objective is to form a network of policies 𝜋𝜃(𝑎𝑡, 𝑜𝑡).

b) State Transition

We have no control over the market, so what we can get is

price and timeliness i.e. state of observation.

So, Instead of 𝑜𝑡−1 , 𝑜𝑡 is given by the dataset, this is

because we collect the price history of various stocks.

c) Reward

We have the logarithm of the equation (3) instead of

having the reward 0 at each timestamp and 𝑝𝑡 at the end:

log 𝑝𝑡 = log∏ µ𝑡𝑦𝑡 . 𝑤𝑡−1
𝑇
𝑡=1 = ∑ log (µ𝑡𝑦𝑡 . 𝑤𝑡−1)

𝑇
𝑡=1 (8)

So, in order to avoid the sparse reward problem [38] where

an environment rarely produces a useful reward signal, which

seriously calls into question the way ordinary DRL tries to

learn [38], we have log (µ𝑡𝑦𝑡 . 𝑤𝑡−1) which rewards each

timestamp.

VII. METHODOLOGY

A. Reinforcement Learning

Reinforcement Learning (RL) is a Machine Learning
method in which agents tend to learn an optimal policy
through trial and error [7]. By interacting with the
environment, an RL agent is supposed to be diligent in
succeeding in sequential tasks when making decisions. The
Reinforcement Learning agents can interact with their

Special Issue on Machine Learning and Natural Language Processing – iJIST, ISSN : 2550-5114
 Vol. 6 - No. 3 - September 2022

http://innove.org/ijist/ 32

environments by observing the repercussions of their actions.
They should be able to learn, to rectify, and to modify their
own actions in response to the rewards received [7].

An independent agent in the RL configuration, observes
and supervises a state 𝑠𝑡 from its environment at time step 𝑡.
This agent engages in interaction with the environment by
taking an action in the state 𝑠𝑡. When taking an action, the
agent and its environment transfer to a new state 𝑠𝑡+1,
depending on the action chosen and the current state. The
rewards provided by the environment determine the best
sequence of actions. The environment also provides an 𝑟𝑡+1
scalar reward to the agent in return each time it transitions to
a new state. The agent's objective consists in assimilating a
control strategy 𝑟 which maximizes the expected return (i.e.
the cumulative, discounted reward). We consider a state, a
policy – a mapping of observations into actions –; a better
policy is one which maximizes the expected profitability in
the entourage. To this end, Reinforcement Learning strives to
provide a solution to the same problem as optimal control. On
the other hand, what we take up as challenge in RL is that the
agent is able to learn about the repercussions of actions in the
environment by errors and by trials, since, a model of the state
transition dynamics is not available to the agent. The
information that the agent uses to update his knowledge is
produced by each interaction with the produced environment.
(see Figure 1).

Fig. 1. Architecture of Reinforcement Learning

B. Deep Learning

Machine learning algorithms adjust the parameters of their

calculations based on the examples given to them. This makes

it possible to adapt their operations to the data provided. Deep

learning allows computational models that are composed of

multiple processing layers to learn representations of data with

multiple levels of abstraction [39]. It is based on Artificial

Neural Networks, a technique inspired by the theory of brain

development and can be learned in the sense of three

learnings: unsupervised learning, supervised learning and

semi-supervised learning.

The neural network structure consisting of Input, Output

and Hidden layers.

In addition, depending on the task of interest, there are

specific architectures involved when training the model using

these networks, we cite the Artificial Neural Networks

(ANN), Deep Neural Networks (DNN), Recurrent Neural

Networks (RNN) and Long Short Term Memory (LSTM).

Fig. 2. The structure of a Deep Neural Network

1) Artificial Neural Network (ANN) : An artificial neural

network (ANN) [40] is designed on the basis of the working

mechanism of the human nervous system [40]. A neural

network learns to perform a task by examining labeled training

examples. It is made up of a number of data processing agents;

that are called neurons and which receive signals from each

other and pass them on to each other. A neuron takes

information as input and develops outputs according to its

internal activation function [42]. The parameters controlling

the learning of ANNs are the number of hidden layers, the

number of neurons per hidden layer. These two choices

directly condition the number of parameters (of weight) to be

estimated and therefore the complexity of the model. There is

also, the maximum number of iterations, the maximum

tolerated error and a possible term of ridge regularization

(decay). We have also, the learning rate as well as a possible

strategy for its evolution and the size of the sets or batches of

observations considered at each iteration. For the

computation, several activation functions can be used, such as:

Sigmoid, Softmax, Rectified Linear unit…
Artificial Neural Networks (ANNs) based on multiple

layers hidden between the input and output layers [43][44] are
called Deep Neural Network (DNNs). An example of DNN
architecture is shown in figure 2.

2) Recurrent Neural Networks (RNN) : Recurrent Neural

Networks [45] , capture information about sequences or time

series data. They are particular networks, which make it

possible to take into account the notion of sequence of

observations.
The new state of the recurrent neural network at time T is

a function of its old state at time 𝑡 minus 1 and of the input at
time which is 𝑋𝑡. This function is the basic idea of RNNs.
𝑋𝑡 : is the entry at time step 𝑡 , 𝑆𝑡 : state at time step 𝑡 ,
𝐹𝑤 : is the recursive function.

𝑆𝑡 = 𝐹𝑤 (𝑆𝑡−1, 𝑋𝑡) (9)

Simple RNNs work with formula (9) and the recursive

function used is a tanh. We multiply the input state X with
weights 𝑊𝑥 and the previous state by 𝑊𝑠 then we go through
an activation tanh to get the new state.

 𝑆𝑡 = 𝑡𝑎𝑛ℎ (𝑊𝑠𝑆𝑡−1 + 𝑊𝑥𝑋𝑡) (10)

Special Issue on Machine Learning and Natural Language Processing – iJIST, ISSN : 2550-5114
 Vol. 6 - No. 3 - September 2022

http://innove.org/ijist/ 33

𝑊𝑥 and 𝑊𝑠 are the weights. Now, to get the output vector
we multiply the new state that is 𝑆𝑡 with 𝑊𝑦.

 𝑌𝑡 = 𝑊𝑦𝑆𝑡 (11)

3) Long Short Term Memory (LSTM) : Recurrent neural

networks [45] are widely used in applications such as

automated language processing. However, they show

deficiency in learning when the sequences to be processed

become too long [46]. As the gradient can become too small

at the end of the chain. Long Short Term Memory [47] was

introduced to solve this problem thanks to their gate system.

It is a variant of RNN and its blocks are known as memory

cells with adaptive multiplicative gates. The first gate of the

LSTM is responsible of deciding which information to

eliminate from the state of the cell which is carried out by a

sigmoid layer and it is called the “forgot gate layer”. For the

second gate called the “entry gate”, it decides what

information can be stored from the current step and decides

how much current information to transmit. As for the output

gate, it decides whether the contents of the cell should

influence the output of the neuron.

C. Deep Reinforcement Learning

Tabular representations represent the most accessible tools
for storing learned estimates like values, models, or policies,
of which each pair of case actions is attached to a discrete
estimate [48]. When estimates are represented discretely,
each additional feature tracked in the state leads to an
exponential growth in the number of state-action pair values
that must be stored [48]. In the literature, this dysfunction is
generally referred to as the “dimensionality curse”, a term that
was originally coined by Bellman [49].

Usually in simple environments, this is rarely a concern,
however it can lead to insoluble problems in real life
algorithms, because of computational and / or memory
constraints which remain essential as parameters. It is possible
to obtain useful policies over a large state action space,
however, it can take an unacceptable amount of time. Several
fields of everyday reality include spaces of continuous state
and / or action; the latter are presumed to remain discretized
in various cases.

On the other hand, interesting steps of discretization are
supposed to limit certain performances which one can
concretize in a domain, whereas meticulous discretization
steps can result in a considerable state reaction interval where
it is impractical to obtain a sufficient sample size dependent
on each state-action pair [48].

Alternatively, the function approximation can be
employed for the purpose of generalization by states and / or
actions, whereby the function approximation is employed to
retrieve and store certain estimates [48]. It turns out that the
approximation of functions remains a fairly active area of
research in RL, providing a way to orient continuous state and
/ or action spaces, to minimize the explosion of state space,
action, and then generalize the previous experience to state-
action pairs that were previously invisible [48].

Fig. 3. Architecture of Reinforcement Learning and Deep Reinforcement

Learning

Neural networks are being used on a recurring basis to
implement function approximation. Several works have
employed deep neural networks as a means of approximating
functions; this emerging model is known as Deep
Reinforcement Learning (DRL) [22]. (See Fig. 3).

Among the most widely used reinforcement learning

techniques, we find: Actor-critic methods. In the next two

sections, we will introduce the concept of these methods as

well as the Deep Deterministic Policy Gradient (DDPG)

algorithm which is based on them.

D. Actor-critic Methods

Actor-critic methods are methods that combine value-
based and policy-based into a single algorithm [50]. As their
name suggests, they use two neural networks: An actor
(policy-based) and a critic (value-based).

The objective of the actor 𝜋𝜃 ∶ 𝑠 ⟶ 𝐴 is to control the
behavior and to get directly close to the policy of the agent, it
is indeed a mathematical function. The policy is just a
probability distribution over the set of actions where we take
a state as input and produce a selection probability of each
action.

On the other hand, the critic 𝑄φ
𝜋 ∶ 𝑆 × A ⟶ 𝑅 aims to

measure the quality of the action taken, in other words, it is
used to approximate the value function. The critic acts like any
other critic, telling the actor how good or bad each action is,
depending on the value of the resulting state.

The two networks are working together to find out how to best
act in the environment. The actor selects the action, the critic
assesses the condition, and then the result is compared to the
environmental rewards. Over time, the critic becomes more
precise in estimating state values, allowing the actor to select
the action that leads to those states from a practical point of
view.

Special Issue on Machine Learning and Natural Language Processing – iJIST, ISSN : 2550-5114
 Vol. 6 - No. 3 - September 2022

http://innove.org/ijist/ 34

Actor-critic methods belong to the class of algorithms
called Temporal Difference Learning [51]. The basic idea of
TD methods is that the learning is based on the difference
between temporally successive predictions [51], so we will
update the weights of our DNN at each time step. This is a
way of saying that we are going to estimate the difference in
values of the successive states that is to say of the states
separated by a time step. As with any DL problem, we
calculate the cost function; in particular, we have 2 cost
functions, one to update our critic and the other to update our
actor. Figure 4 represents the architecture of the Actor-critic
methods.

Fig.5. Architecture of Actor-Critic algorithm

Actor updates are done always in the same way:

𝜃 ← 𝜃 + 𝛼∇𝜃 𝑙𝑜𝑔𝜋𝜃(𝑎𝑡|𝑠𝑡)𝐺𝑡 (12)

where 𝐺𝑡 is the evaluation of long-term returned by the critic

for 𝑠𝑡. Critic updates are done to evaluate the current policy

𝑤 ← 𝑤 + 𝛼𝛿∇𝜃𝑉𝑊(𝑎𝑡|𝑠𝑡) (13)

where 𝛿 is the estimated error in evaluating the 𝑠 state.

E. Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) [10] is a
model-free off-policy algorithm for learning continuous
actions. In particular, we use a replay memory where, instead
of just learning from the most recent state transition the agent
has experienced, it will keep track of the sum total of its
experiences, then randomly sample that memory to each time
step to get a batch of memories to update the weight of its deep
neural network. The other innovation is the use of target
networks [10]. The architecture of the DDPG algorithm is
shown in figure 5.

 DDPG uses the Actor-Critic structure which means that it
has two networks. For the network of actors, it takes
observation and gives action. For the critical network, it takes
the observation and the corresponding action and produces the
value Q. For the deterministic part, this comes from the fact
that we have a network of policies which, under a certain
observation of the environment, only gives the one which is
considered to be the most appropriate action.

 Now, this poses a problem called the exploration-
exploitation dilemma [7] and it is present in all Reinforcement
Learning problems, it is a fundamental concept in the field.
The basic idea is that our agent tries to build a model of the
world. When the agent takes an action out of the optimum it
is called exploration and when it takes the optimal action, it is
called exploitation because it is simply exploiting the best
known action and the solution here, is to take the output of our
current network and apply some extra noise to it.

So, we can break down the algorithm into the following:
Experience replay, Actor and critic network updates, target
network updates and exploration.

As used in many RL algorithms, DDPG uses a replay
buffer to sample the experience in order to update the
parameters of the neural network. During each trajectory
deployment, we save all experience tuples (state, action,
reward, next_state) and store them in a cache of finite size
“replay buffer”. Then, when updating the parameters of the
neural network, the experiences inside this recovery memory
are randomly selected, which avoids introducing a bias during
learning.

Fig.4. Architecture of Deep Deterministic Policy Gradient

Special Issue on Machine Learning and Natural Language Processing – iJIST, ISSN : 2550-5114
 Vol. 6 - No. 3 - September 2022

http://innove.org/ijist/ 35

1) Actor (Policy) & Critic (Value) Network Updates

The network of values is updated in the same way as in Q-
learning. The updated Q-value is obtained by the Bellman
equation:

𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, µ
′(𝑠𝑖+1|𝜃

µ′
) | 𝜃𝑄′

) (14)

However, in DDPG, the calculation of Q values for the
next state is done with the target value network and the target
strategy network. Next, we minimize the mean square loss
between the updated Q-value and the original Q-value :

𝐿𝑜𝑠𝑠 =
1

𝑁
 ∑ (𝑦𝑖𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖|𝜃

𝑄))2 (15)

For the political function, our objective is to maximize the
expected return :

𝐽(𝜃) = 𝐸[𝑄(𝑠, 𝑎) | 𝑠 = 𝑠𝑡,𝑎𝑡=µ(𝑠𝑡)] (16)

To calculate the policy loss, we take the derivative of the
objective function with respect to the font parameter.
Knowing that the function of actor (political) is differentiable,
we must therefore apply the chain rule.

∇𝜃µ𝐽(𝜃) ≈ ∇𝑎Q(s, a) ∇𝜃µµ(𝑠|𝜃µ) (17)

But as we update the policy in a non-political way with
lots of experience, we take the average of the sum of the
gradients calculated from the mini-batch:

∇𝜃µ𝐽 ≈

1

𝑁
 ∑ ∇𝑎𝑄(𝑠, 𝑎 |𝜃𝑄

ⅈ
) | 𝑠=𝑠𝑖 , 𝑎=µ(𝑠𝑖)

 ∇𝜃µ µ(𝑠|𝜃µ)|𝑠𝑖
(18)

2) Target network update

We make a copy of the parameters of the target network
and slowly follow them with those of the learned networks via
“software updates”, as illustrated below:

 𝜃𝑄′
 ← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

𝜃µ′ ← 𝜏𝜃µ + (1 − 𝜏)𝜃µ′ (19)

 where 𝜏 ≪ 1

3) Exploration

In reinforcement learning for discrete action spaces,
exploration is done via the probabilistic selection of a random
action such as epsilon-greedy [52] or Boltzmann exploration.
For continuous action spaces, exploration is done by adding
noise to the action itself. Authors in [53] add noise to the
output of the action :

µ′(𝑠𝑡) = µ(𝑠𝑡 | 𝜃𝑡
µ
) + 𝑁 (20)

The pseudo-code is described in the section above.

VIII. EXPERIMENTS AND RESULTS

1) Dataset:

In this work, we assess the performance of the Deep
Deterministic Policy Gradients on Portfolio Management. We
have formed the model with 15 Stock price data (AAPL, BAC,

Date Time AAPL_open AAPL_High AAPL_Low AAPL_Close AAPL_Vol

2018-01-02 173100 170.18 170.19 169.88 169.94 17654

2018-01-02 173200 169.90 169.93 169.67 169.69 8200

2018-01-02 173300 169.67 169.88 169.58 169.58 9380

2018-01-02 173400 169.46 169.46 169.27 169.33 5348

2018-01-02 173500 169.45 169.60 169.44 169.59 9700

Algorithm. Deep Deterministic Policy Gradient

Randomly initialize critic network Q(s, a|𝜃𝑄) and actor µ(s,a|𝜃µ)
with weights 𝜃𝑄 and 𝜃µ

Initialize target network Q’ and µ’ with weights 𝜃𝑄′ ← 𝜃𝑄, 𝜃µ′
←

 𝜃µ

Initialize replay buffer R

For episode = 1, M do

 Initialize a random process N for action exploration

 Receive initial observation state 𝑠1

 For t = 1, T do

 Select action 𝑎𝑡 = µ(𝑠𝑡 | 𝜃
µ) + 𝑁𝑡 according to the

 current policy and exploration noise

 Execute action 𝑎𝑡 and observe reward 𝑟𝑡 and observe
new state 𝑠𝑡+1
 Store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡 , 𝑠𝑡+1) in R

 Set 𝑠𝑡+1 = 𝑠𝑡

 Sample a random minibatch of N transitions
(𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖+1) from R

 Set 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, µ
′(𝑠𝑖+1|𝜃

µ′) | 𝜃𝑄′
)

 Update critic by minimizing the loss:

 𝐿 =
1

𝑁
 ∑ (𝑦𝑖𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖|𝜃

𝑄))2

 Update the actor policy using the sampled policy
gradient:

𝛻𝜃µ𝐽 ≈
1

𝑁
 ∑𝛻𝑎𝑄(𝑠, 𝑎 |𝜃𝑄

𝑖

) | 𝑠=𝑠𝑖 , 𝑎=µ(𝑠𝑖) 𝛻𝜃µ µ(𝑠|𝜃µ)|𝑠𝑖

 Update the target networks:

𝜃𝑄′
 ← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

𝜃µ′ ← 𝜏𝜃µ + (1 − 𝜏)𝜃µ′
 End for

End for

TABLE I. EXAMPLE OF RAW DATA FOR THE AAPL STOCK

Special Issue on Machine Learning and Natural Language Processing – iJIST, ISSN : 2550-5114
 Vol. 6 - No. 3 - September 2022

http://innove.org/ijist/ 36

BA, GE, GOOG, JNJ, KO, MA, MRK, MSFT, NVDA, PFE,
SBUX, T, XOM) from 2018/01/01 to 2018/10/29, recorded in
minutes with open, close, high, low, column features. Table 1
gives an example of raw data from the AAPL Stock Price.

2) Parameter settings and results :

We use the algorithm designed for environments with

continuous action spaces which is the DDPG, in order to learn
the policy network 𝜋𝜃(𝑎𝑡, 𝑠𝑡). The configurations are as
follows :

• The Critic Network: Refers to the value function.

• The Actor Network: which designates the network of
policies.

• Exploration noise: Ornstein-Uhlenbeck with zero
mean, 0.3 sigma and 0.15 theta.

• We train the models with different settings in 1500
episodes.

a) : DDPG results for the month of May

 (b) : DDPG results for the month of June

 (c) : DDPG results for the month of July

 (d) : DDPG results for the month of August

 (e) : DDPG results for the month of September

 (f) : DDPG results for the month of October

Fig. 6. DDPG result : Portfolio value vs market value for the six months on the 15 Stocks : May, June, July, August, September and
October

Special Issue on Machine Learning and Natural Language Processing – iJIST, ISSN : 2550-5114
 Vol. 6 - No. 3 - September 2022

http://innove.org/ijist/ 37

 As for the basic parameters : the stock contains the cash
position, the long position of 15 stocks and the short position
of 15 stocks, the stock price data is observed every minute, but
the action is done only every 7 minutes. In addition to the
original (s, a, r, s'), other state-action pairs of "inferred steps"
were also collected and stored in the replay buffer at each step.

 We have normalized the historical price instead of using
the open, high, low and close gross price so that whatever the
actual price of the historical prices is, they are going to be in
the same scale. The historical price is normalized as:
(closeopen - 1) × scale, and we heuristically set the scale
factor to 100.

For building our learning model we adopted a recurrent
Long short-term memory network (LSTM) to solve the
portfolio management problem which gave promising results.

The market value is obtained by equally distributing the
investment to all the stocks. Figure 6 represents the value of
the portfolio (Orange) versus the market value (Blue) during
the last four months of testing. The figure shows that the
model only buys and sells with a very small portion of the
portfolio, it hasn't changed positions very often during the
month.

 We used the data from the previous month to build the RL
model in a time series rolling diagram and we tested it over
the following month. As for the results, the model achieved a
rate of return of 14% for the selected period compared to a of
return of 5.6% using a “Uniform Buy and Hold” strategy of
the 15 stocks and maintaining a rate of return of -16.8% using
the “Buy Best Stock” strategy in the last month.

IX. CONCLUSION

In this article, we have explored the Deep Deterministic
Policy Gradient method and investigated its efficiency when
applied to stock trading as a controller. Our model was able to
achieve a higher rate of return compared to baseline strategies
which are “Buy And hold” or “Best Stock”.

Although stock trading with agents, through
Reinforcement Learning, has shown some efficiency, it is not
yet reliable as it sometimes makes mistakes and loses money.

The results obtained can be improved in several ways. For
instance, we would like to test Reinforcement Learning
algorithms on live trading platforms rather than historical data.

We could also select the most predictive characteristics by
adjusting the model with various hyper-parameters. Finally,
we could compare different Reinforcement Learning
algorithms under similar conditions and data sources.

REFERENCES

[1] COOPER, Robert G., EDGETT, Scott J., et KLEINSCHMIDT, Elko J.
Portfolio Management. Pegasus, New York, 2001.

[2] SUTTON, Richard S. Introduction: The challenge of reinforcement
learning. In : Reinforcement Learning. Springer, Boston, MA, 1992. p.
1-3.

[3] Robert A Haugen. Modern investment theory. Prentice Hall, 1986.

[4] Harry M Markowitz. Portfolio selection: efficient diversification of
investments, volume 16. Yale university press, 1968.

[5] B. Li and S. C. H. Hoi, “Online portfolio selection: A survey,” ACM
Computing Surveys, vol.46, pp.35, 2014.

[6] LIN, Long-Ji. Self-improving reactive agents based on reinforcement
learning, planning and teaching. Machine learning, 1992, vol. 8, no 3-
4, p. 293-321.

[7] SUTTON, Richard S., BARTO, Andrew G., et al. Introduction to
reinforcement learning. Cambridge : MIT press, 1998.

[8] MENG, Terry Lingze et KHUSHI, Matloob. Reinforcement Learning
in Financial Markets. Data, 2019, vol. 4, no 3, p. 110.

[9] TAN, Runjia, ZHOU, Jun, DU, Haibo, et al. An modeling processing
method for video games based on deep reinforcement learning. In
: 2019 IEEE 8th joint international information technology and
artificial intelligence conference (ITAIC). IEEE, 2019. p. 939-942.

[10] LILLICRAP, Timothy P., HUNT, Jonathan J., PRITZEL,
Alexander, et al. Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971, 2015.

[11] MAO, Hongzi, ALIZADEH, Mohammad, MENACHE, Ishai, et
al. Resource management with deep reinforcement learning. In
: Proceedings of the 15th ACM Workshop on Hot Topics in Networks.
2016. p. 50-56.

[12] ABBEEL, Pieter, COATES, Adam, QUIGLEY, Morgan, et al. An
application of reinforcement learning to aerobatic helicopter flight. In
: Advances in neural information processing systems. 2007. p. 1-8.

[13] ZHOU, Zhenpeng, LI, Xiaocheng, et ZARE, Richard N. Optimizing
chemical reactions with deep reinforcement learning. ACS central
science, 2017, vol. 3, no 12, p. 1337-1344.

[14] BAGNELL, J. Andrew et SCHNEIDER, Jeff G. Autonomous
helicopter control using reinforcement learning policy search methods.
In : Proceedings 2001 ICRA. IEEE International Conference on
Robotics and Automation (Cat. No. 01CH37164). IEEE, 2001. p. 1615-
1620.

[15] KIM, H. Jin, JORDAN, Michael I., SASTRY, Shankar, et
al. Autonomous helicopter flight via reinforcement learning. In
: Advances in neural information processing systems. 2004. p. 799-
806.

[16] MICHIE, Donald et CHAMBERS, Roger A. BOXES: An experiment
in adaptive control. Machine intelligence, 1968, vol. 2, no 2, p. 137-
152.

[17] TESAURO, Gerald. Practical issues in temporal difference learning.
In : Advances in neural information processing systems. 1992. p. 259-
266.

[18] Liu H, Cocea M. Traditional Machine Learning[J]. 2018.

[19] Russakovsky, O.et al. Imagenet large scale visual recognition
challenge. Int. J. Compute. Vis. 115, 211–252 (2015).

[20] WU, Yonghui, SCHUSTER, Mike, CHEN, Zhifeng, et al. Google's
neural machine translation system: Bridging the gap between human
and machine translation. arXiv preprint arXiv:1609.08144, 2016.

[21] OORD, Aaron van den, DIELEMAN, Sander, ZEN, Heiga, et
al. Wavenet: A generative model for raw audio. arXiv preprint
arXiv:1609.03499, 2016.

[22] Y. Li, “Deep reinforcement learning: An overview,” arXiv preprint
arXiv:1701.07274, 2017.

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, et al., “Human-level control
through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp.
529–533, 2015.

[24] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M.
Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[25] Gu, S.; Holly, E.; Lillicrap, T.; Levine, S. Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates. In
Proceedings of the IEEE international conference on robotics and
automation (ICRA), Singapore, 29 May–3 June 2017; pp. 3389–3396.

[26] KHALID, Muhammad, AWAIS, Muhammad, SINGH, Nishant, et
al. Autonomous Transportation in Emergency Healthcare Services:
Framework, Challenges, and Future Work. IEEE Internet of Things
Magazine, 2021, vol. 4, no 1, p. 28-33.

[27] BAUCUM, Matthew, KHOJANDI, Anahita, et VASUDEVAN, Rama.
Improving Deep Reinforcement Learning with Transitional Variational
Autoencoders: A Healthcare Application. IEEE Journal of Biomedical
and Health Informatics, 2020.

[28] MALDONADO-RAMIREZ, Alan, RIOS-CABRERA, Reyes, et
LOPEZ-JUAREZ, Ismael. A visual path-following learning approach

Special Issue on Machine Learning and Natural Language Processing – iJIST, ISSN : 2550-5114
 Vol. 6 - No. 3 - September 2022

http://innove.org/ijist/ 38

for industrial robots using DRL. Robotics and Computer-Integrated
Manufacturing, 2021, vol. 71, p. 102130.

[29] ZHA, ZhongYi, TANG, XueSong, et WANG, Bo. An Advanced
Actor-Critic Algorithm for Training Video Game AI. In : International
Conference on Neural Computing for Advanced Applications.
Springer, Singapore, 2020. p. 368-380.

[30] YE, Deheng, CHEN, Guibin, ZHANG, Wen, et al. Towards playing
full moba games with deep reinforcement learning. arXiv preprint
arXiv:2011.12692, 2020.

[31] GAO, Ziming, GAO, Yuan, HU, Yi, et al. Application of deep q-
network in portfolio management. In : 2020 5th IEEE International
Conference on Big Data Analytics (ICBDA). IEEE, 2020. p. 268-275.

[32] LUCARELLI, Giorgio et BORROTTI, Matteo. A deep Q-learning
portfolio management framework for the cryptocurrency
market. Neural Computing and Applications, 2020, vol. 32, no 23, p.
17229-17244.

[33] PARK, Hyungjun, SIM, Min Kyu, et CHOI, Dong Gu. An intelligent
financial portfolio trading strategy using deep Q-learning. Expert
Systems with Applications, 2020, vol. 158, p. 113573.

[34] YU, Pengqian, LEE, Joon Sern, KULYATIN, Ilya, et al. Model-based
deep reinforcement learning for financial portfolio optimization. In
: RWSDM Workshop, ICML. 2019. p. 2019.

[35] HU, Yuh-Jong et LIN, Shang-Jen. Deep reinforcement learning for
optimizing finance portfolio management. In : 2019 Amity
International Conference on Artificial Intelligence (AICAI). IEEE,
2019. p. 14-20.

[36] MONAHAN, George E. State of the art—a survey of partially
observable Markov decision processes: theory, models, and
algorithms. Management science, 1982, vol. 28, no 1, p. 1-16.

[37] WANG, De-Xin et CAO, Xi-Ren. Event-based optimization for
POMDPs and its application in portfolio management. IFAC
Proceedings Volumes, 2011, vol. 44, no 1, p. 3228-3233.

[38] ZAI, Alexander et BROWN, Brandon. Deep reinforcement learning in
action. Manning Publications, 2020.

[39] LECUN, Yann, BENGIO, Yoshua, et HINTON, Geoffrey. Deep
learning. nature, 2015, vol. 521, no 7553, p. 436-444.

[40] HOPFIELD, John J. Artificial neural networks. IEEE Circuits and
Devices Magazine, 1988, vol. 4, no 5, p. 3-10.

[41] Hassoun, M. H. (1995). Fundamentals of artificial neural networks.
MIT press.

[42] Daniel, G. (2013). Principles of artificial neural networks (Vol. 7).
World Scientific.

[43] Bengio, Y. (2009). Learning deep architectures for AI. Foundations
and trends R in Machine Learning, 2(1), 1-127.

[44] Schmidhuber, J. (2015). Deep learning in neural networks: An
overview. Neural networks, 61, 85-117.

[45] MEDSKER, Larry R. et JAIN, L. C. Recurrent neural networks. Design
and Applications, 2001, vol. 5.

[46] YU, Yong, SI, Xiaosheng, HU, Changhua, et al. A review of recurrent
neural networks: LSTM cells and network architectures. Neural
computation, 2019, vol. 31, no 7, p. 1235-1270.

[47] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[48] KIRAN, B. Ravi, SOBH, Ibrahim, TALPAERT, Victor, et al. Deep
reinforcement learning for autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems, 2021.

[49] R. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton
University Press, 1957.

[50] KONDA, Vijay R. et TSITSIKLIS, John N. Actor-critic algorithms. In
: Advances in neural information processing systems. 2000. p. 1008-
1014.

[51] SUTTON, Richard S. Learning to predict by the methods of temporal
differences. Machine learning, 1988, vol. 3, no 1, p. 9-44.

[52] Watkins, C.: Learning from Delayed Rewards. PhD thesis, University
of Cambridge, Cambridge, England (1989).

[53] UHLENBECK, George E. et ORNSTEIN, Leonard S. On the theory of
the Brownian motion. Physical review, 1930, vol. 36, no 5, p. 823.

Special Issue on Machine Learning and Natural Language Processing – iJIST, ISSN : 2550-5114
 Vol. 6 - No. 3 - September 2022

http://innove.org/ijist/ 39

