
Models for Digital Humanities Tools: Coping with
Technological Changes and Obsolescence

Simone Zenzaro

CNR-Istituto di Linguistica Computazionale “Antonio Zampolli”(CNR-ILC), Italy
simone.zenzaro@ilc.cnr.it

Abstract—This article highlights the importance of defining
models and using modular software for digital humanities tools.
We emphasize the need for these tools to adapt to the rapidly
changing technology landscape, which has led to many tools
having short lifespans. We propose an approach to address
software obsolescence by using modular models. This involves
designing tools to be easily integrated, scalable, and adaptable
to changing technology and user requirements. To illustrate the
usefulness of models, we present their application to a real-world
use case: the CoPhi Editor web platform.

Index Terms—digital humanities, models, modularity, tools,
obsolescence

I. THE CURSE OF OBSOLESCENCE

The history of the Digital Humanities field, have seen vast
proliferation of tools meant to support the research in the
Humanities [1]–[8]. It is possible to categorize them into at
least two broad groups: standalone tools and web-based tools.
A standalone tool has a definite purpose and can usually be
used without the need of an internet connection. An example
of standalone tool is CollateX [9], [10]. The use of web-
based tools needs a web user interface of some sort, typically
requiring a web server to deliver this interface to users. An
example of web-based tool is the Voyant Tools environment
[11]. Currently, most Digital Humanities tools seem to favor
web technologies, in the form of websites or applications,
thus indicating a trend toward web-based tools. An example
of this trend can be found in the field of Digital Scholarly
Editions, which are usually accessible as artifacts on the web
through a user interface (primarily simple HTML, with some
exceptions). These interfaces are generated from typically one
or more files encoding the edition in the TEI/XML format
[12].

The result of applying digital approaches to humanities tasks
is a mixed blessing. On one hand, it is now possible to tackle
tasks that were previously unfeasible (for example, because
they would take too long to complete manually). An example
of this is the application of Handwritten Text Recognition
(HTR) [13] for digitizing ancient manuscript texts, allowing
for review and correction when the HTR fails to recognize the
characters—a less burdensome task compared to transcribing
the entire text manually.

On the other hand, technology is plagued by the curse of
obsolescence. Indeed, the rapid pace at which frameworks and

The GreekSchools project, “The Greek Philosophical School according to
Europe’s earliest ‘history of philosophy’: Towards a new pioneering critical
edition of Philodemus’ Arrangement of the Philosophers” has received funding
from the European Research Council (ERC) under the European Union’s
Horizon 2020, Excellent Science (Grant agreement No. 885222).

technology are changing and evolving makes it challenging to
keep up with updating the tools. This is especially evident
in the realm of web technologies, where an added challenge
arises with the maintenance of web servers and the associated
financial cost of keeping them operational.

So, although such tools are meant to give access to valuable
and interesting research results, or to enable other scholars
to conduct their studies leveraging these platforms, a great
number of tools have been short lived.

While books have stood the test of time, providing a
medium that is not only easy to read and preserve but has
also remained relatively unchanged over the centuries, their
digital counterparts have faced more challenges. Since digital
landscape is characterized by rapid evolution and technological
obsolescence, it is important to carefully consider and plan for
the long-term viability of these digital tools [14] in order to
establish a robust and sustainable strategy for the lifespan of
digital tools becomes crucial.

As a consequence, relevant research, previously available
on the Web, has been lost or is hardly accessible making web
sites as Wayback Machine [15] extremely useful to preserve
relatively old snapshots of such resources.

In summary, two reasons for this situation can be identified
in:

1) rapid obsolescence of technology;
2) web servers maintenance and availability.
The second scenario may stem from various factors such

as long-term funding issues, political decisions, or close con-
nections to the life cycle of a research project. any of these
issues are external to the domain in which the tool is being
developed, so focusing on them would be ineffective. Thus
we opted to focus on addressing the challenges associated
with rapidly evolving technology. In our view, the development
and adoption of models play a crucial role in mitigating these
issues.

As stated in [16] in the Digital Humanities (DH) field,
“tool building is not a mere research-independent act to enable
data processing. Rather [. . .] an intrinsic aspect of research”.
We will focus on the importance of models for tools and
the role of modularity in the software that implements them.
We present a definition for the notion of model and we
point out where a model is useful. We discuss as well the
role of modularity. Then, we briefly present CoPhi Editor, a
web-based application for authoring digital scholarly editions,
analysing how its design follows a model-based and modular
approach. We conclude discussing some of the drawback of
adopting a model-based approach.

International Journal of Information Science & Technology – iJIST, ISSN : 2550-5114
 Vol. 8 - No. 2 - June 2024

http://innove.org/ijist/ 1

II. MODELS

When it comes to the term model, there is a large number
of possible definitions depending on the context. Finding a
definition that is valid for each context is arduous [17], yet
modeling is a core activity [18]–[23] in the Digital Humanities.
A model usually is a representation of something that is useful
to explore and understand better the nature of a target object
or system. Although there are several definitions of the term
system, e.g. [24], [25], here we focus on software systems. In
order to use a model for Digital Humanities tools with the goal
to tame the technology obsolescence we seek for a definition
that adheres to the following criteria:

• clarifies the structure and functionalities of the tool
• provides the needed documentation
• is machine actionable
• is generic enough to be applied at different aspects of the

tool
The rationale behind this choice is an effort to deter the

development of disposable tools and instead promote a more
sustainable approach that fosters the creation of dependable
and enduring solutions. By prioritizing the development and
adoption of models, we aim to establish a framework that not
only addresses the immediate technological challenges but also
lays the foundation for the long-term viability of digital tools
in the field of humanities research. Ultimately, our goal is
to foster a culture of resilience within the digital humanities
community, ensuring that the tools we create continue to serve
scholars and researchers effectively for years to come.

Examining the impact of applying formal methods on the
overall quality of software design and development, we borrow
the definition of ground model from [26] as “the conceptual
construct, blueprints of the to-be-implemented piece of real
world”. In [26] the ground model is related to the precise
mathematical definition of the Abstract State Machine (ASM)
formal method [27], [28].

In the context of Digital humanities tools development, the
ground model is a valuable concept for establishing a develop-
ment framework. While applying the Abstract State Machine
method would be beneficial for accurately understanding and
modeling specific parts of the software system that implements
a tool, we do not intend to apply it uniformly across all
aspects of development. Our emphasis lies in utilizing the
ASM method and the ground model as a solid starting point
for defining criteria upon which we can evaluate the reliability
and resilience to change and obsolescence of a tool and choose
the “right” model formalism.

A. The ASM ground model

An ASM ground model is an high-level model for complex
real-life systems. With high-level meaning that the description
of the model should be understandable by non technical
experts. The features of a ground model are:

• precise: the model should be accurate enough to describe
the system while avoiding the introduction of unnecessary
details;

• simple and concise: the model should be understandable
by both domain experts and system designers and to be
manageable for inspection and analysis;

• abstract (minimal) yet complete: each semantically rele-
vant feature and all the interactions with the environment
are present;

• validatable: the model should be falsifiable;
• with precise semantical foundation as the basis for reli-

able tool development and prototyping.
In our case, we loosen the last feature in order to allow

for different formalism even though the precise mathematical
foundation is not fully achievable.

B. Understanding the domain

The process of building a model is in itself an attempt to
understand the domain. Within the Digital Humanities field,
this step is of paramount importance for ensuring the accu-
rate realization of a tool. Building a model involves delving
deeply into the intricacies of the subject matter, dissecting its
nuances, and identifying the key components that will drive
the development process forward. By meticulously crafting a
model, developers gain invaluable insights into the domain’s
underlying structures, relationships, and functionalities. This
deep understanding lays a solid foundation for designing and
implementing digital tools that effectively address the needs
and challenges of the humanities field. Moreover, the process
of building a model fosters collaboration and interdisciplinary
exchange, as scholars and experts from diverse backgrounds
come together to contribute their expertise and insights.

Typically, when starting the development of a tool, two
primary actors come into play: a humanist and a computer
scientist. Building an effective and accurate tool requires
that both parties overcome a language and communication
problem and a share a common language. This effort is not
merely about bridging the gap between disciplines; it involves
fostering a collaborative environment where humanists and
computer scientists can effectively communicate and align
their perspectives.

The model is one way of sharing a common understanding
of the domain with the constraint to agree on the meaning of
a common vocabulary. In the Domain Drive Design (DDD)
[29] approach to software design, such common language is
referred to as the ubiquitous language and it influences the
software even in the way its source code is written.

For humanists, the process involves articulating their tacit
knowledge [30], [31]—the implicit understanding and exper-
tise that they possess through years of study and experience,
making it challenging to express in explicit terms. On the other
hand, computer scientists must capture such knowledge and
translate it into machine understandable requirements. It ap-
pears how important it is an interdisciplinary collaboration and
communication in the pursuit of effective digital humanities
tools.

This process could greatly benefit from the involvement
of a third figure who acts as a mediator, possessing the
ability to comprehend and effectively communicate in both

International Journal of Information Science & Technology – iJIST, ISSN : 2550-5114
 Vol. 8 - No. 2 - June 2024

http://innove.org/ijist/ 2

the respective ”languages” of the humanist and the computer
scientist. This intermediary role is embodied by the digital
humanist, who serves as a bridge between the two disciplines,
facilitating collaboration and understanding.

C. Multilevel models

Thinking about a model as a fixed description of a given
tool might be misleading. In our opinion, it is more useful to
think the model as a set of models, each of them holding the
same criteria we are discussing. Talking about a set of models,
instead of a single one makes it possible to describe the tool
looking at it from different points of view. Different aspects
of the tool may require a different modelling approaches to
accurately capture their peculiarities.

For instance, we may desire a model to encapsulate the
tool’s business logic, delineating its operational rules, pro-
cesses, and workflows.

Similarly, a model for the tool’s data architecture serves to
depict the structure, relationships, and constraints of the data
entities utilized by the tool.

Furthermore, a model for the user interface (UI) offers a
visual representation of the tool’s interface elements, layout,
and interaction patterns. This model assists in designing an
intuitive and user-friendly interface that meets the needs and
expectations of the users.

Lastly, a model for the tool’s infrastructure outlines the
underlying technological components, configurations, and de-
ployment architecture required to support the tool’s operation.
This model ensures scalability, reliability, and performance by
addressing considerations such as server architecture, network-
ing protocols, and security mechanisms.

But, how to put together these models?
Certainly, defining a set of models introduces the challenge

of orchestrating communication between them.
If we maintain each model on separate, orthogonal axes,

we only need to describe the interface between the models —
in other words, how each model interacts with the others. So
the orchestration is resolved by clear interfaces definition. For
instance, consider the UI model and the data model. We must
define where and how the UI displays the data.

D. Validate the correctness of the tool

Once the – or more precisely one of several versions of the –
model has been prepared in a given formalism, it encapsulates
all the behavior, data descriptions, and interactions between
components as agreed upon and understood by both the
domain experts and the software developers.

Therefore, the model becomes instrumental in verifying
that every concept has been precisely and unambiguously
described, and that every problem has been effectively ad-
dressed. By providing a clear and structured representation of
the domain, the model serves as a source of validation for
the tool’s features. It enables both the domain experts and the
software developers to systematically evaluate and verify the
tool’s functionality against the requirements and specifications
outlined in the model.

Without a model, validating whether the developed tool
aligns with the initial requirements becomes a challenging
task.

Moreover, systematically addressing every aspect of the
tool is helpful in handling exceptions, whose impact is often
underestimated by humanists, as they can resolve them point
by point. However, for a software system to ensure correct
behavior, it must encompass each exception comprehensively.

E. Derive an implementation

One might consider the source code as a model of the tool
itself, and indeed, it is one. However, the model remains a
distinct artifact from the source code used to implement the
tool. Moreover the source code is not meant to be easily
understandable by domain experts and it is bound to a specific
programming language. In this sense, the model can serve as
a blueprint of any implementation.

As an example, in [32], the technological stack used for
developing the tool has undergone two changes already. This
serves as an illustration of a common challenge encountered
when technology evolves: the tool is often required to change
along with its underlying technology.

The evolution of technology introduces a dynamic element
to the development process, as new frameworks, libraries,
and methodologies emerge, offering improved capabilities or
security fixes. While these advancements can enhance the
functionality and performance of digital tools, they also ne-
cessitate corresponding updates and adaptations.

The need to adapt to changing technology highlights the
importance of maintaining flexibility in the design and imple-
mentation of digital humanities tools. By adopting a model-
based approach, developers can facilitate smoother transitions
between different technological environments.

Just as the blueprint of a building is not the building itself
but rather the framework upon which the building can be
constructed or reconstructed, the model serves as the blueprint
of the tool. It provides a structured representation of the
tool’s conceptual framework, delineating its key components,
functionalities, and interactions.

As the source of truth of the tool, the model should be used
to derive an implementation. Depending on the formalism of
the model, such implementation may be a manual translation
to source code or even automatic code generation from model
as is the case for UML models [33], [34].

Furthermore, without a model, there is no guarantee that
different versions of a tool share the same set of functionalities.

F. Document the tool

In a hardly axiomatizable field such as the Humanities, a
model is also a way to document a tool.

Because the model formalizes every concept of the tool, it
provides a deeper understanding of the tool’s gears than the
tool itself. Even if the technology changes, one can adapt or
rebuild the tool by looking at its model. This statement holds
true even when the people involved in implementing the tool
change.

International Journal of Information Science & Technology – iJIST, ISSN : 2550-5114
 Vol. 8 - No. 2 - June 2024

http://innove.org/ijist/ 3

As documentation, the model can also be a good way to
explain the tool to anyone. In particular when the model abide
to the aforementioned criteria, the model stems from a shared
language between domain experts and computer scientists and
describes unambiguously all the needed functionalities.

Treating the model as documentation also proves beneficial
for tracking the evolution of the tool’s requirements through
extensions and changes. By documenting the initial require-
ments and specifications within the model, it is possible to
establish a clear baseline for the tool’s functionality and scope.

As the development progresses, any extensions or modifica-
tions to the requirements can be documented within the model,
providing a comprehensive record of the tool’s evolution over
time. This ensures transparency and accountability in the
decision-making process.

Moreover, by maintaining a detailed history of requirement
changes within the model, developers can effectively manage
the complexity of the development.

Furthermore, the documentation provided by the model can
serve as a valuable reference for future iterations of the tool
or for similar projects within the domain.

In this way, treating the model as documentation enhances
the traceability, transparency, and maintainability of the tool,
contributing to its sustainability.

III. MODULARITY

The concept of modularity is common in computer science
and it goes back to the Parnas’ notion of information hiding
[35]. Keeping models modular means to strive for the identi-
fication and isolation of sets of features independent of each
other. This way it is possible to decompose the domain of
the tool into smaller components. Each component deals with
a, possibly, easier problem of the entire tool easing its later
implementation.

The modular decomposition can be applied at different
levels. An example of modular decomposition applied to the
architecture of the tool is the choice of a Service Oriented
Architecture (SOA) that has been already suggested as suitable
for the DH domain [16] and that often translates to the
comparison between monolithic and microservices architecture
[36]–[38].

Modules must be compositional in order to build upon
each other. If a model is modular it means that we can later
refine the model or change one model with another when the
requirements change. Moreover, the software implementation
of a module might change more easily without requiring to
rebuild the entire system. We will see an example of this in
section IV.

With a modular model, it is also possible to change the tool
incrementally upgrading the underlying technology. Hence
with the model, we also decompose the hurdle of updating
an entire software system.

IV. COPHIE DITOR

CoPhi Editor [39] is web-based collaborative and coopera-
tive authoring platform for Digital Scholarly Editions (DSE)

that is being developed as part of the ERC AdG 885222-
GreekSchools project. It is being developed to support the
editorial process for the papyrology DSE of the Philodemus
of Gadara’s Arrangement of the Philosophers. One of the
challenges in this project regards the reconstruction of the text
that is extracted from carbonized papyri and usually presents
many gaps.

Although CoPhi Editor focuses initially on digital papyrol-
ogy, it is designed to also support the editorial process of any
type of text and is compliant with the de-facto standard format
for DSEs making the edited text available in XML/TEI.

The peculiarity of CoPhi Editor is that it tries to bridge
the gap between the classic editorial – on paper – workflow
and the digital philology practices. This aim is achieved
implementing the DSL-based DSE approach. The philologists,
following this approach, focuses on the text using the modali-
ties and editorial conventions that they are used to and that are
the result of decades or even centuries of established common
practises in a particular domain.

The software platform interprets the text as Domain Specific
Languages (DSL) [40], [41].

As an example, the Figure 1 shows an excerpt from the
diplomatic transcription of a papyrus that follows the editorial
conventions the papyrologists are accustomed to when they
write the text of their printed editions. The Figure 2 instead
is an example of how the text would appear inside the CoPhi
Editor platform. The two texts are in ancient greek and present
negligible differences. The diple obelismente symbol (between
last two lines) can’t appear as an interlinear symbol in the
DSL but the overall encoding via the DSL is pretty close to
the printed editions texts.

Fig. 1. Editorial conventions.

The resulting DSLs are defined by a precise domain anal-
yses conducted under synergistic collaboration between the
domain expert (e.g. the philologist) and the more technical
people (e.g. a computer scientist or a digital humanist). Once
defined, the DSL captures all of the text phenomena interesting

International Journal of Information Science & Technology – iJIST, ISSN : 2550-5114
 Vol. 8 - No. 2 - June 2024

http://innove.org/ijist/ 4

Fig. 2. DSL encoding editorial conventions.

for the domain of application (e.g. the papyrology) inside a
context free grammar. An excerpt of the grammar for the
diplomatic transcription is shown in Listing 1.
// column made of lines
column: line+;
// line ended by a new line char
line: WS* lineNum? WS*

(text|paragraphos|dipleObelismene)+ NL;
// number of line
lineNum: num WS;
// sequence of digits
num: NUM;
// Latin or Greek text
text: ((latUnit|grcUnit) WS*|num)+;
// extratextual information expressed in Latin
latUnit: latSeq punct?;
// sequence of Latin characters
latSeq: LAT_SEQ;

Listing 1. Excerpt of th Contex Free Grammar for the diplomatic transcription
DSL

Leveraging the DSL, it is possible to attach automatic
or semi-automatic functions to the text, notably check of
correctness against the editorial conventions, cross-validation
of properties and relations between texts, search capabilities,
serialization toward other data formats, text processing, auto-
matic suggestions of conjecture to integrate the missing text
(lacunae) leveraging deep neural network such as the one
described in [42].

The ability to generate a representation of the DSE in other
data formats enables the editors to different scenarios based
on how they will publish the DSE. For example, exporting
in DOCX the edition is useful to produce a printed edition
while exporting to TEI or EpiDoc would be useful for a digital
publication.

A. Modular modules in CoPhi Editor

The software architecture of CoPhi Editor was derived by
applying modular models to each level of the tool. In this
section, as an example, we discuss how the models were
applied to the overall architecture of the tool and to the
definition of the data for the DSE texts.

Fig. 3 shows the Microservice Architecture of CoPhi Editor.

Fig. 3. Example of a figure caption.

This kind of architectural pattern aims to implement a
software system as a set of independently deployable, loosely
coupled, components. In this particular case, the main modules
of CoPhi Editor are:

• UI: the web application component that is the visual
representation of the tool, written in Typescript and
Angular;

• DSLs: a set of web services that implement each DSL
capabilities (e.g. autocompletion and syntax checking)
exposing a REST API [43] to communicate with the UI;

• Data Service: a web service exposing a REST API that
is in charge of managing the access and manipulation of
the DSE data;

• OT Service: a web service that manages the concurrent
changes to the text by different scholars making sure
that the text integrity is preserved, it also sends push
notification to the UI;

• Authentication Service: a web service that enables the au-
thentication to the application with institutional accounts
or third part identity providers (e.g. Google, Facebook,
etc.);

• IIIF Server: an image server that provides all the needed
facsimile images.

The following sections will exemplify how we adopted
models for each dimension of the CoPhi Editor platform.

1) UI: The user interface in CoPhi Editor is an Angular1

web application written in the Typescript programming lan-
guage2. For this kind of applications it is usual to derive
the Graphical User Interface (GUI) starting from a set of
wireframes of mockups. At this level a wireframe are an
effective model to present an application that does not yet
exist. Figure 4 is an example of a page of the future web
platform where, with simplified lines and sketches, the set of
features are laid out before considering visual design elements
like color-schemes.

This type of visualisation is easy to grasp for non technical
people and is useful to reason about the functionalities of the

1https://angular.dev/
2https://www.typescriptlang.org/

International Journal of Information Science & Technology – iJIST, ISSN : 2550-5114
 Vol. 8 - No. 2 - June 2024

http://innove.org/ijist/ 5

Fig. 4. CoPhi Editor User Interface Wireframe.

Fig. 5. CoPhi Editor User Interface.

user interface. Changing a wireframe is way easier than modify
the code implementing it as a web user interface.

Wireframes also give a good direction for the developer that
is able to analyse and identify reusable graphical components
before beginning coding them. For instance in Figure 4 the
concepts of window, text editor, facsimile are recurrent, so
the developer can envision the user interface implementing a
single component for each concept and putting them together.
This type of functionality isolation is indeed an instance of
modular design.

Once a first draft for the wireframe is available, the user
interface can be developed. Figure 5 shows how the wireframe
can become an actual web interface. The differences between
a wireframe and the actual web interface can be found in the
translation of the simple lines to full fledged web components
implementing user interaction, and their visual representation
and rendering on screen.

It is conceivable to leverage an additional model as a layer
between wireframes and tha actual web interface in the form
of mockups. A mockup would provide a static visual model of

International Journal of Information Science & Technology – iJIST, ISSN : 2550-5114
 Vol. 8 - No. 2 - June 2024

http://innove.org/ijist/ 6

what the user interface will look like in its final form.
Despite the usefulness of mockups, we have chosen to avoid

this additional model in order to balance the workload with
the resources available to carry out the web platform. This
choice gives us an hint about the model based approach to
the development of tools: following blindly a model based
approach can be counterproductive. It is paramount to always
balance effort and benefits when using models.

Leveraging mockups that also describe the functionalities of
the web interface enables the tool to be resilient to future tech-
nological changes. For example, if the Angular web framework
were to no longer be supported (as has already happened with
AngularJS), the wireframes would allow for the rebuilding of
the entire user interface—or part of it—while keeping the rest
of the application (web services, etc.) intact.

Moreover, renovating the technological stack for the user
interface can be carried out in parallel with the current web
interface maintenance and may even be developed by different
individuals than those who originally worked on it.

2) RESTful APIs: Most of the web services in the ar-
chitecture of CoPhi Editor expose a RESTful Application
Programming Interface (API) to access and manage their
resources. All of these APIs are defined by a model that
follows the OpenAPI [44] specification 3. This kind of model
take the form of a file in JSON4 or YAML5 format that is a
formal standard to describe HTTP APIs.

Listing 2 shows an example of RESTful endpoint that
specifies how to GET a text from the data service using the
YAML version of OpenAPI.

The advantage of adopting this model manifold. On one
hand the specification for a RESTful service in the OpenAPI
description provides a single source of truth on how the HTTP
calls to the API should be processed.

Such descriptions helps to identify all the possible outcomes
in calling the API. For example the specification includes the
possibility of server errors or unavailable resources making the
discussion about how to manage such “error” cases. Moreover
it succinctly describes all the parameters needed to perform a
request to the service.
/units/{id}:

parameters:
- name: v
in: query
example: 20231224
schema:
type: string

- name: id
in: path
required: true
schema:
type: string

get:
tags:
- units

responses:
"200":
description: get the unit
content:
application/json:

3https://www.openapis.org/
4https://www.json.org/
5https://yaml.org/

schema:
$ref: "#/components/schemas/unit"

"404":
description: Not Found

"500":
description: Internal Server Error
content:
application/json:
schema:
$ref: "#/components/schemas/error"

Listing 2. A RESTful endpoint modelled with OpenAPI specification

On the other hand, an OpenAPI specification can be used
to generate both the client and the server stubs for the
RESTful API. The stubs generated code takes care of checking
the formal correctness of the parameters for each service
request including authentication, authorization, and security
parameters lifting the developer from the boilerplate code to
manage the checks.

This means that developers can focus on the actual business
logic of each API request and be sure that client and server
communicate through compatible interfaces.

3) DSL: The DSL itself can be regarded as a model when
referring to its definition through a context-free grammar. The
DSL comprises a lexer (refer to Listing 3) and a parser (refer
to Listing 4). The lexer is utilized to convert a sequence of
characters into a list of tokens, which are then processed
by the parser. Conversely, the parser contains rules used to
transform a stream of tokens into an Abstract Syntax Tree
(AST), representing the hierarchical structure of the source
code’s syntax.

Both the lexer and the parser can be viewed as modular
models for the DSLs. An illustration of modularity within
such a model pertains to the definition of recognized symbols.
For instance, the lexer in Listing 3 defines L BRA as the left
square bracket. If the requirements necessitate a change in the
representation of brackets to curly brackets, we would solely
adjust the lexer while leaving the parser unchanged. Similarly,
we can maintain the same lexer and modify the AST structure
by updating the parser’s rules.

GRC_CHAR: [\u03B1-\u03C9];
L_BRA: ’[’;
R_BRA: ’]’;
L_PAR: ’(’;
R_PAR: ’)’;
MINUS: ’-’;
PLUS: ’+’;
NUM: [1-9];

Listing 3. Excerpt of the paleographic apparatus lexer

lectio :
(GRC_CHAR
| L_BRA
| R_BRA
| L_TOP_HLF_BRA
| R_TOP_HLF_BRA
| L_DBL_BRA
| R_DBL_BRA
| L_TOP_SML_BRA
| R_TOP_SML_BRA
| COMMA
| SEMICOLON
| SINGLE_SUB_DOT
)+
;

Listing 4. Excerpt of the paleographic apparatus parser

International Journal of Information Science & Technology – iJIST, ISSN : 2550-5114
 Vol. 8 - No. 2 - June 2024

http://innove.org/ijist/ 7

4) DSL Service: CoPhi editor is based on Domain Specific
Languages. The most common place in which a DSL is
used is to encode different kind of texts. The leading idea
is to make CoPhi Editor users interact with a programming
language without realizing it. That is not meant to trick the
users, but to bring the knowledge of Integrated Development
Environments (IDEs) – the text editors – in the field of
programming languages into the editorial process of Digital
Scholarly Editions (DSEs). A Formal grammar defines the
syntax of any programming language, and the DSEs are
written in a quasi-formal paradigm. Thus it is often possible to
generate a context free grammar from the editorial conventions
that describe a particular type of text. In the context of CoPhi
Editor, the first iteration toward a DSL-based DSE platform
has manifested in a collection of markup Domain Specific
Languages for papyrology. We have previously discussed how
closely such languages can adhere to the actual editorial
conventions of the domain (see Figure 1 and 2), however, the
scope of what can be managed via a DSL can vary greatly
depending on the specific DSE being edited.

The TEI guidelines are de facto standard for DSEs and they
find a concrete realization in a specific XML schema that can
be actually considered a DSL itself. Therefore, being a DSL-
based platform, CoPhi Editor should provide a module that
abstracts the interaction with every type of DSL.

All the DSLs services share a common Application Pro-
gramming Interface (API) – inspired by the Language Server
Protocol 6 – that allows to manage all the different languages
uniformly inside the CoPhi Editor application. This way it
is possible to expand the set of languages available in the
platform without requiring any changes to the graphical user
interface.

Such API defines a data model and the RESTful endpoint
to access syntactical errors checking, contextual suggestions,
and syntax highlighting features.

The other model adopted for the DSLs service is the
RESTful API definition model.

5) Authentication: The authentication service has been de-
veloped adopting an application user model. This model aims
to abstract from the authentication provider and describe what
a CoPhi Editor user is. In particular, the user model serves the
purpose of providing a common interface toward SAML-based
authentication [45] and OAuth2-based authentication [46].

We utilize SAML for facilitating authentication via institu-
tional accounts, such as university accounts, which are com-
monly employed by organizations for secure access to various
services and resources. This protocol ensures a standardized
approach to authentication, particularly suitable for verifying
the identities of users within trusted domains, like educational
institutions.

On the other hand, OAuth2 is employed to enable authen-
tication through third-party accounts, including popular plat-
forms such as Google, Facebook, and Twitter. This approach
leverages the OAuth2 protocol’s capabilities to enable secure

6https://microsoft.github.io/language-server-protocol/

and convenient access to our platform using credentials from
these external services. By integrating with OAuth2, users can
seamlessly authenticate with their existing accounts on these
platforms, eliminating the need to create new credentials and
enhancing user convenience.

Together, the combination of SAML and OAuth2 provides
a comprehensive solution for authentication, catering to both
institutional and third-party users. This approach not only en-
sures the security and reliability of the authentication process
but also offers users a flexible and familiar way to access our
platform, enhancing user experience and accessibility.

The model defines a user as an authenticated individual for
whom two access tokens are generated. The first is a JSON
Web Token7 (JWT) that contains minimal information about
the user (i.e., name, surname, and email). This token is meant
to be shared among the web services of the CoPhi Editor
platform since it is easy to validate the token’s integrity and it
has a short lifespan –limiting malicious or unintended use of
the access token. Since the JWT token has a short lifespan, to
grant a work session behaviour for the users, the second token
is opaque ”refresh” token and is used to automatically generate
new JWTs. Since generating new JWTs means that this token
can grant access to all of the services on the platform, it must
be securely shared between the Authentication service and the
web user interface application.

This model is valuable for handling the functionality of
each authentication provider separately, ensuring that the au-
thentication process remains modular and adaptable. As long
as the generated user adheres to the defined user model of
the platform, this approach allows for seamless integration
of various authentication mechanisms without compromising
the consistency and security of user access. Moreover, by
abstracting from the specifics of each authentication provider,
the platform can easily accommodate changes or additions to
authentication methods in the future.

6) Authorization: While authentication deals with the goal
of identify who the user is, authorization manages what a user
can do in the application. In a multi user application, it is
usual to define a way to differentiate the users based on the
activities that it can perform, namely the role of the user. Thus
a role identifies the set of authorization rules that protects the
resources managed by the platform from unintended action.

For instance, the GreekSchools project have three types
of users: the editors, the collaborators, and the viewers. The
platform defines each of them so that the editor are the only
users enabled to change the texts, the collaborators are can
only add comments to the texts, the viewers can read texts but
have no access to the collaborators’ comments and can not
change the texts.

The GreekSchools roles are indeed justified for that specific
context but, since CoPhi Editor is a domain agnostic platform,
such roles should be parametric with regard to the set of DSLs
that are currently used for a specific project.

7https://jwt.io/

International Journal of Information Science & Technology – iJIST, ISSN : 2550-5114
 Vol. 8 - No. 2 - June 2024

http://innove.org/ijist/ 8

The access control in CoPhi Editor is also derived from the
definition of a model. In this case the model is a DSL (see
Listing 5) used to specify the set of activities –as operation
on the platform’s RESTful APIs – and the roles as a set of
activities. It is also possible to assign role to specific users.
Given these three parts, CoPhi Editor can be configured to the
needs of the project context.

PostUnits activity can POST /units
GetUnits activity can GET /units
GetNoCommentsUnit activity can GET /units

where dsl.language is not comment

Contributor role can GetUnits
Admin role can GetUnits, PostUnits
Viewer role can GetNoCommentsUnit

user1 is Admin
user2 is Viewer
user3 is Contributor

Listing 5. Example of the authorization DSL

7) Data service: The Data service, as the RESTful web
service in charge of storing and managing data shared with
the user interface, is the place in which the model for the data
arises.

The most important piece of data to be defined and stored
are the texts from which the DSE is composed.

The data model is derived from that of [47], which simplifies
the definition of text of every granularity and structure by
leveraging a recursive text data structure. In the case of CoPhi
Editor we refer to unit to mean working unit of texts that are
associated to a DSL.

V. DOWNSIDES OF ADOPTING MODELS

There are numerous advantages to developing or embracing
models, but there are also associated costs.

Creating a model demands expertise in the subject matter.
Moreover, modeling is seldom a straightforward, linear en-
deavor; rather, it typically entails multiple iterations aimed at
revising and enhancing earlier versions until a state of stability
is attained.

Beyond the requirement for expertise, developing a model
also entails time and resource allocation. Extensive research,
thorough requirements analysis, and meticulous design efforts
are essential components of the modeling process. Addition-
ally, collaboration among the various actors is necessary to
ensure that the model is comprehensive, accurate, and aligned
with the specific domain’s needs.

Another cost associated with model development is the ne-
cessity for validation and verification. This involves conduct-
ing rigorous testing, soliciting expert reviews, and comparing
the model against real-world data or scenarios to ensure that
it accurately represents the system or phenomenon of interest.

Once a software system model is prepared, the process
of implementation in a specific technology or programming
language can begin. Ensuring alignment between the imple-
mented software and the model is critical, yet achieving this
synchronization necessitates meticulous scrutiny of the code
and a thorough comprehension of the model.

Selecting the appropriate formalism for each model is a
challenging task that is inherently subjective and dependent
on various factors. It not only relies on the expertise of the
model builder but also on the familiarity of domain experts
with that particular formalism.

The choice of formalism involves considering a range of
factors, including the nature of the problem domain, the
complexity of the system being modeled, the intended use of
the model, and the preferences and backgrounds of the people
involved. Different formalisms offer distinct advantages and
may be better suited to capture certain aspects of the system
more effectively.

Another crucial consideration is that while modularity repre-
sents a valuable attribute of models, it must be accompanied by
the establishment of clear interfaces for effective communica-
tion between modules. However, designing effective interfaces
requires careful consideration of various factors, including the
granularity of module interactions, the level of abstraction, and
the specific requirements of the system. Once such interfaces
have been defined, the modules have to comply with them.

VI. CONCLUSIONS

We have observed that Digital Humanities (DH) is a field in
which modeling can be beneficial in the design of new tools.
Despite the scientific community acknowledging that modeling
is a central aspect of DH research, many tools have had short
lifespans.

We have identified two potential reasons for this issue.
Consequently, we have chosen to tackle the problem of techno-
logical obsolescence by discussing how models can effectively
mitigate it in various ways.

We began by introducing the key attributes of a robust
model, starting with the concept of a “ground model” within
the Abstract State Machine formal method. Moreover, we
have highlighted a connection between effective models and
modularity.

To illustrate the practical application of models to Digital
Humanities tools, we have presented CoPhi Editor, a web-
based authoring platform for Digital Scholarly Editions. We
have outlined some dimensions in which models have been
applied to the tool.

In conclusion, we also discussed some drawbacks of adopt-
ing models.

REFERENCES

[1] I. Pedretti, A. Del Grosso, E. Giovannetti, L. Mancini, S. Piccini,
M. Abrate, A. L. Duca, and A. Marchetti, “The clavius on the web
project: Digitization, annotation and visualization of early modern
manuscripts,” in Proceedings of the Third AIUCD Annual Conference
on Humanities and Their Methods in the Digital Ecosystem, ser. AIUCD
’14. New York, NY, USA: Association for Computing Machinery,
2014. [Online]. Available: https://doi.org/10.1145/2802612.2802636

[2] T. Roeder, “Juxta web service, lera, and variance viewer. web based
collation tools for tei,” RIDE, 2020.

[3] A. C. Williams, A. Santarsiero, C. Meccariello, G. Verhasselt, H. D.
Carroll, J. F. Wallin, D. Obbink, and J. H. Brusuelas, “Proteus: A
platform for born digital critical editions of literary and subliterary
papyri,” in 2015 Digital Heritage, vol. 2, 2015, pp. 453–456.

International Journal of Information Science & Technology – iJIST, ISSN : 2550-5114
 Vol. 8 - No. 2 - June 2024

http://innove.org/ijist/ 9

https://doi.org/10.1145/2802612.2802636

[4] R. Haentjens Dekker, D. van Hulle, G. Middell, V. Neyt, and
J. van Zundert, “Computer-supported collation of modern manuscripts:
CollateX and the Beckett Digital Manuscript Project,” Digital
Scholarship in the Humanities, vol. 30, no. 3, pp. 452–470, 03 2014.
[Online]. Available: https://doi.org/10.1093/llc/fqu007

[5] D. A. Smith, J. A. Rydberg-Cox, and G. R. Crane, “The perseus project:
A digital library for the humanities,” Literary and Linguistic Computing,
vol. 15, no. 1, pp. 15–25, 2000.

[6] S. Hagel, “The classical text editor. an attempt to provide for both
printed and digital editions,” Digital philology and medieval texts,
Pacini, University of Michigan, pp. 77–84, 2007.

[7] R. R. D. Turco, G. Buomprisco, C. D. Pietro, J. Kenny, R. Masotti, and
J. Pugliese, “Edition visualization technology: A simple tool to visualize
tei-based digital editions,” Journal of the Text encoding initiative, no. 8,
2014.

[8] S. Zenzaro, D. Marotta, and A. Bertolacci, “Ceed: a cooperative web-
based editor for critical editions,” AIUCD 2018, p. 93, 2018.

[9] R. H. Dekker and G. Middell, “Computer-supported collation with
collatex: managing textual variance in an environment with varying
requirements,” in Supporting Digital Humanities 2011: Answering the
unaskable, 2011.

[10] R. Haentjens Dekker, D. Van Hulle, G. Middell, V. Neyt, and J. Van Zun-
dert, “Computer-supported collation of modern manuscripts: Collatex
and the beckett digital manuscript project,” Digital Scholarship in the
Humanities, vol. 30, no. 3, pp. 452–470, 2015.

[11] L. J. Sampsel, “Voyant tools,” Music Reference Services Quarterly,
vol. 21, no. 3, pp. 153–157, 2018.

[12] L. Burnard, What is the Text Encoding Initiative?: How to add intelligent
markup to digital resources. OpenEdition Press, 2014, no. 3.

[13] W. AlKendi, F. Gechter, L. Heyberger, and C. Guyeux, “Advancements
and challenges in handwritten text recognition: A comprehensive
survey,” Journal of Imaging, vol. 10, no. 1, 2024. [Online]. Available:
https://www.mdpi.com/2313-433X/10/1/18

[14] A. M. Del Grosso and O. Nahli, “Towards a flexible open-source soft-
ware library for multi-layered scholarly textual studies: An arabic case
study dealing with semi-automatic language processing,” in 2014 Third
IEEE International Colloquium in Information Science and Technology
(CIST), 2014, pp. 285–290.

[15] H. Jahanshahi, M. Cevik, J. Navas-Sú, A. Başar, and A. González-
Torres, “Wayback Machine: A tool to capture the evolutionary behavior
of the bug reports and their triage process in open-source software
systems,” Journal of Systems and Software, vol. 189, p. 111308, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0164121222000565

[16] J. Van Zundert, “If you build it, will we come? large scale digital
infrastructures as a dead end for digital humanities,” Historical Social
Research/Historische Sozialforschung, pp. 165–186, 2012.

[17] A. Ciula, Ø. Eide, C. Marras, and P. Sahle, “Models and modelling be-
tween digital and humanities. remarks from a multidisciplinary perspec-
tive,” Historical Social Research/Historische Sozialforschung, vol. 43,
no. 4, pp. 343–361, 2018.

[18] W. McCarty, Humanities computing. Springer, 2005.
[19] D. Buzzetti, “Digital representation and the text model,” New Literary

History, vol. 33, no. 1, pp. 61–88, 2002.
[20] M. Beynon, S. Russ, and W. McCarty, “Human computing—modelling

with meaning,” Literary and Linguistic Computing, vol. 21, no. 2, pp.
141–157, 2006.

[21] T. Orlandi, “Ripartiamo dai diasistemi,” I nuovi orizzonti della filologia,
ecdotica, critica testuale, editoria scientifica e mezzi informatici elet-
tronici, convegno internazionale 27-29 maggio 1998. Atti dei convegni
lincei, pp. 87–101, 1998.

[22] P. Monella et al., “Livelli di rappresentazione del testo nell’edizione del
de nomine di orso beneventano,” Umanistica Digitale, vol. 2, pp. 67–91,
2018.

[23] F. S.-E. GIOVANNETTI, “Un modello per domarli tutti: verso una
rappresentazione del testo come esplicitazione di documento, lingua
e contenuto2,” FARE LINGUISTICA APPLICATA CON LE DIGITAL
HUMANITIES, p. 145, 2022.

[24] L. Skyttner, General systems theory: ideas & applications. World
Scientific, 2001.

[25] R. L. Ackoff, “Towards a system of systems concepts,” Management
science, vol. 17, no. 11, pp. 661–671, 1971.

[26] E. Börger, “The asm ground model method as a foundation of require-
ments engineering,” Verification: Theory and Practice: Essays Dedicated

to Zohar Manna on the Occasion of His 64th Birthday, pp. 145–160,
2003.

[27] E. Börger, The abstract state machines method for high-level system
design and analysis. Springer, 2010.

[28] E. Börger and A. Raschke, Modeling companion for software practi-
tioners. Springer, 2018.

[29] E. Evans, Domain-Driven Design Reference: Definitions and Pattern
Summaries. Dog Ear Publishing, 2014.

[30] V. Gervasi, R. Gacitua, M. Rouncefield, P. Sawyer, L. Kof, L. Ma,
P. Piwek, A. de Roeck, A. Willis, H. Yang, and B. Nuseibeh,
Unpacking Tacit Knowledge for Requirements Engineering. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 23–47. [Online].
Available: https://doi.org/10.1007/978-3-642-34419-0 2

[31] M. Polanyi and A. Sen, The tacit dimension. University of Chicago
press, 2009.

[32] G. Cacioli, G. Cerretini, C. Di Pietro, S. Maenza, R. R. Del Turco,
and S. Zenzaro, “There and back again: what to expect in
the next evt version,” pp. 212–217, 2022. [Online]. Available:
http://amsacta.unibo.it/id/eprint/6848/

[33] E. Domı, B. Pérez, Á. L. Rubio et al., “A systematic review of code
generation proposals from state machine specifications,” Information and
Software Technology, vol. 54, no. 10, pp. 1045–1066, 2012.

[34] F. Ciccozzi, I. Malavolta, and B. Selic, “Execution of uml models:
a systematic review of research and practice,” Software & Systems
Modeling, vol. 18, pp. 2313–2360, 2019.

[35] D. L. Parnas, P. C. Clements, and D. M. Weiss, “Enhancing reusability
with information hiding,” in Proceedings of the ITT Workshop on
Reusability in Programming, 1983, pp. 7–9.

[36] L. De Lauretis, “From monolithic architecture to microservices archi-
tecture,” in 2019 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW). IEEE, 2019, pp. 93–96.

[37] F. Ponce, G. Márquez, and H. Astudillo, “Migrating from monolithic ar-
chitecture to microservices: A rapid review,” in 2019 38th International
Conference of the Chilean Computer Science Society (SCCC). IEEE,
2019, pp. 1–7.

[38] O. Al-Debagy and P. Martinek, “A comparative review of microservices
and monolithic architectures,” in 2018 IEEE 18th International Sympo-
sium on Computational Intelligence and Informatics (CINTI). IEEE,
2018, pp. 000 149–000 154.

[39] S. Zenzaro, A. M. Del Grosso, F. Boschetti, and G. Ranocchia, “Verso
la definizione di criteri per valutare soluzioni di scholarly editing
digitale: il caso d’uso greekschools,” p. 20, 2022. [Online]. Available:
http://amsacta.unibo.it/id/eprint/6848/

[40] M. Fowler, Domain-specific languages. Pearson Education, 2010.
[41] A. Van Deursen, P. Klint, and J. Visser, “Domain-specific languages:

An annotated bibliography,” ACM Sigplan Notices, vol. 35, no. 6, pp.
26–36, 2000.

[42] Y. Assael, T. Sommerschield, B. Shillingford, M. Bordbar,
J. Pavlopoulos, M. Chatzipanagiotou, I. Androutsopoulos, J. Prag, and
N. de Freitas, “Restoring and attributing ancient texts using deep
neural networks,” Nature, vol. 603, no. 7900, pp. 280–283, Mar 2022.
[Online]. Available: https://doi.org/10.1038/s41586-022-04448-z

[43] R. T. Fielding, “Representational state transfer (rest). chapter 5 in archi-
tectural styles and the design of networkbased software architectures,”
Ph.D. dissertation, Ph. D. Thesis, University of California, Irvine, CA,
2000.

[44] D. Miller, J. Whitlock, M. Gardiner, M. Ralphson, R. Ratovsky, and
U. Sarid, “Openapi specification v3. 1.0,” 2022.

[45] J. Hughes and E. Maler, “Security assertion markup language (saml)
v2. 0 technical overview,” OASIS SSTC Working Draft sstc-saml-tech-
overview-2.0-draft-08, vol. 13, p. 12, 2005.

[46] D. Hardt, “The OAuth 2.0 Authorization Framework,” RFC 6749, Oct.
2012. [Online]. Available: https://www.rfc-editor.org/info/rfc6749

[47] A. M. Del Grosso, D. Albanesi, E. Giovannetti, and S. Marchi, “Defining
the core entities of an environment for textual processing in literary
computing.” in DH, 2016, pp. 771–775.

International Journal of Information Science & Technology – iJIST, ISSN : 2550-5114
 Vol. 8 - No. 2 - June 2024

http://innove.org/ijist/ 10

https://doi.org/10.1093/llc/fqu007
https://www.mdpi.com/2313-433X/10/1/18
https://www.sciencedirect.com/science/article/pii/S0164121222000565
https://www.sciencedirect.com/science/article/pii/S0164121222000565
https://doi.org/10.1007/978-3-642-34419-0_2
http://amsacta.unibo.it/id/eprint/6848/
http://amsacta.unibo.it/id/eprint/6848/
https://doi.org/10.1038/s41586-022-04448-z
https://www.rfc-editor.org/info/rfc6749

	The curse of obsolescence
	Models
	The ASM ground model
	Understanding the domain
	Multilevel models
	Validate the correctness of the tool
	Derive an implementation
	Document the tool

	Modularity
	CoPhiE ditor
	Modular modules in CoPhi Editor
	UI
	RESTful APIs
	DSL
	DSL Service
	Authentication
	Authorization
	Data service

	Downsides of adopting models
	Conclusions
	References

