
International Journal of Information Science & Technology –iJIST, ISSN : 2550-5114

Vol.2 No.2, 2018

http://innove.org/ijist/ 19

Abstract— One of the most crucial steps in the design of

modern Embedded Systems (ES) is the partitioning the system’s

functionalities between the hardware (HW) blocks and the

software (SW) blocks. The process of hardware software

partitioning (HSP) is driven by several non functional

requirements factors. Several works studied the influence of the

execution time and the hardware area (cost) factors while dealing

with the HSP problem; other works included also the power

consumption factor. This article gives a study the HSP problem

while considering several factors (ES metrics) and presents two

approaches to solve the problem. The first approach has the

objective of optimizing simultaneously a number of metrics while

respecting a constraint on the global hardware area (cost metric),

this approach is implemented using 0-1 Knapsack Problem (KP)

algorithm; experimental results show that the algorithm is very

fast and gives more reliable solutions comparing to well-known

algorithms such as the Genetic Algorithm (GA) and the

Simulated Annealing (SA) algorithm. The second approach aims

to optimize the hardware cost while respecting given constraints

on the other metrics; the proposed approach is based on Balas

method.

Index Terms—Embedded Systems, HW/SW Partitioning,

Multi-objective, 0-1 Knapsack Problem, Genetic Algorithm,

Simulated Annealing, Balas Method.

I. INTRODUCTION

mbedded Systems consist of a combination of hardware

components and one or more microprocessors executing

software functionalities. The increasing complexity in

designing embedded systems involves using high-level system

approaches in order to achieve the system functionality and

the performance goals. The compound design (Co-Design) is

one of the most used approaches to fulfill the latter

requirements. The goal is to enable robust system designs and

to improve the hardware and the software interactions. The co-

design is composed of four parts, co-specification to describe

the system functionality at abstract level, co-synthesis to

define the system architecture, co-simulation to

simultaneously simulate the hardware and the software before

prototyping, co-verification to verify mathematically that the

system meets the requirements. The Hardware Software

partitioning (HSP) process is the most important step in co-

synthesis part and in the whole co-design process. The HSP

consists of splitting the system’s tasks into two parts, a

hardware part and a software part, and choosing the best tasks

to be included in each part based on some specific metrics and

requirements.

Most of previous works dealt with the HSP problem with

two metrics, the performance (execution time) and the cost

(hardware area). In fact, the hardware leads to faster speed

with more expensive cost while the software leads to cheaper

cost with lower speed. The objective is to find the best

possible balance between the performance and the cost. Two

families of algorithms were proposed. On the one hand, the

family of exact solutions such as Integer Linear Programming

[1], Branch and Bound algorithm [2], and Dynamic

Programming [3], are very successful for an HSP problem of a

system with a small number of tasks. However, when the

number of tasks increases, exact solutions tend to be slow and

become inefficient. On the other hand, the family of heuristic

algorithms gives an approximation to the exact solution, and it

is very useful for an HSP problem of a system with large size.

The most used heuristic algorithms are Simulated Annealing

(SA) algorithm [4], Genetic Algorithm (GA) [5], Tabu Search

algorithm [6] and Greedy Algorithm [7, 8].

Besides dealing with two metrics, other approaches were

proposed to study the HSP problem with three metrics,

execution time, hardware cost and power consumption

metrics.

In this article, we propose two novel approaches with the

objective of optimizing several metrics of the system. The

metrics which are taken into account are the execution time,

the hardware area, the power consumption, the development

time (related to IP reuse), the quality (degree of maturity of

the IP), the bandwidth and the memory usage. The first

approach aims to optimize simultaneously the involved

metrics with the respect of a given constraint on the global

hardware area, while the second approach has the objective of

optimizing the hardware area with the respect of the

constraints on the involved metrics. For the first proposed

approach, a weight is associated to each metric and is

proportional to the important of this latter; the approach is

based on the computation of the benefit of the implementation

of the task in hardware; the approach is implemented using

0-1 Knapsack Problem algorithm; to validate its effectiveness,

HW/ SW Partitioning Algorithms for Multi-

objective Optimization in Embedded Systems

Adil Iguider, Oussama Elissati, Abdeslam En-Nouaary, and Mouhcine Chami

Institut National des Postes et Télécommunications, Lab. STRS,

Av. Allal El Fassi, Madinat Al Irfane, Rabat, Morocco.

Email: {iguider, elissati, abdeslam, chami}@inpt.ac.ma

E

http://innove.org/ijist/

International Journal of Information Science & Technology –iJIST, ISSN : 2550-5114

Vol.2 No.2, 2018

http://innove.org/ijist/ 20

we compare its results with the results obtained using Genetic

Algorithm and Simulated Annealing algorithm. For the second

approach, the total of each metric is calculated, and then, the

Balas method is used to minimize the total hardware cost

without exceeding the constraints on the other metrics.

The remainder of this article is organized as follows.

Section II reviews the related works. In section III, we present

the first proposed approach. In section IV, we give details of

the implementations of this approach. The second proposed

approach is presented in section V. Section VI shows the

results of simulations. Lastly the conclusions and future works

are summarized in section VII.

II. RELATED WORK

The co-design as defined in [9] is the design of cooperating

hardware components and software components in a single

design effort. Choosing a good balance between hardware

implementation and software implementation is driving by

several factors. Several works studied the influence of the

execution time and the hardware cost while dealing with the

HSP problem, either by exact solutions or by heuristic

approaches.

The family of exact solutions includes algorithms, such as

Integer Linear Programming (ILP), Branch and Bound

algorithm (B&B), and Dynamic Programming (DP).ILP

formulation consists of a set of variables, a set of linear

inequalities, and a single linear function of the variables that

serves as an objective function, in [1], the authors proposed to

solve the HSP problem using ILP.B&B algorithm is based on

binary tree, at each level, each variable can take the values 0

or 1, the objective is to find the path from the top to the

bottom of the tree which has the optimal cost under the given

constraints; an example of its application to the problem is

presented in [2].DP is a method, in which large problems are

broken down into smaller problems, and through solving the

individual smaller problems, the solution to the larger problem

is discovered, an example of using DP in the HSP problem is

presented in [3].

The family of heuristic algorithms contains, inter alia,

Simulated Annealing (SA) algorithm, Genetic Algorithm

(GA), Tabu Search (TS) algorithm, Greedy Algorithm (GR),

Hill Climbing (HC) Algorithm and Particle Swarm

Optimization (PSO). With the analogy of solid annealing, the

Simulated Annealing algorithm is based on a heating phase

and a controlled cooling phase. An initial temperature is

chosen and a first random solution is generated. Then the

temperature is reduced and a neighbor solution is generated

iteratively until the end of the cooling phase. In [4] the

proposed algorithm is based on a combination of Simulated

Annealing and Greedy Algorithm. In [10], the author proposed

an enhanced algorithm for Simulated Annealing. Genetic

algorithm is based on the survival of the fitness principle,

which tries to retain more genetic information from generation

to generation. The algorithm generates an initial population

and defines a fitness function. The evolution of a generation is

based on selection, crossover and mutation steps. The

algorithm iterates over those steps and evaluates each

generation until certain condition is met and it returns the best

individual of the latest generation as solution. In [5], the

authors proposed and enhanced GA algorithm with an

adaptive method for crossover and mutation steps. Other

approaches were based on GA for solving the HSP problem,

as in [11, 12]. Tabu Search algorithm picks an arbitrary point

and evaluates an initial solution, then it computes the next set

of solutions within neighborhood of current solution and picks

the best solution from the set and iterates until the optima is

reached. TS algorithm accepts non-improving solutions in

order to escape from local optimum. In [6], the authors

proposed two approaches, one is based on 0-1 Knapsack

problem and the other is based on Tabu Search algorithm.

Another implementation of the TS algorithm for the HSP

problem was presented in [13]. Greedy Algorithm is based on

making the locally optimal choice at each stage with the hope

of finding the global optimum. In [7], the authors proposed

three approaches based on Greedy Algorithm targeted for

multi-processor system. In [8], the proposed algorithm is

based on Greedy Algorithm and Simulated Annealing

algorithm. Hill Climbing Algorithm consists of starting with a

sub-optimal solution to a problem, and then repeatedly

improves the solution until some condition is maximized;

unlike the Greedy Algorithm, Hill Climbing Algorithm has the

ability to avoid local minima; in [14], the authors proposed an

algorithm based on HC for the HSP problem. Particle swarm

optimization consists of a swarm of particles, where particle

represent a potential solution (better condition). Particle will

move through a multidimensional search space to find the best

position in that space; an example of using PSO in hardware

software partitioning is presented in [15].Other heuristic

approaches were proposed to solve the HSP problem. In [16],

the proposed approach is based on bat inspired algorithm. In

[17] the authors proposed a methodology on Kernighan/Lin

algorithm. In [18] the algorithm proposed is derived from the

shortest path computing.

The previous cited articles deal with the HSP problem with

two metrics. Other approaches were proposed to study the

HSP problem with three metrics, execution time, hardware

cost and power consumption metrics. In fact, minimizing the

power consumption is particularly crucial for mobile devices

and for the cost of the cooling system. In [19], the proposed

algorithm is a combination of Genetic Algorithm and Branch

and Bound Algorithm to simultaneously optimize the three

metrics. In [20], the authors propose two heuristic algorithms

to optimize the power consumption under execution time and

area constraints for multiprocessor systems. In [21], the

proposed algorithm is based on 0-1 Knapsack Problem and

Tabu Search algorithm to simultaneously optimize the power

and the execution time while respecting the hardware area

constraint.

Table 1 summarizes and gives taxonomy of the cited

algorithms.

http://innove.org/ijist/

International Journal of Information Science & Technology –iJIST, ISSN : 2550-5114

Vol.2 No.2, 2018

http://innove.org/ijist/ 21

TABLE I
ALGORITHMS IN HW/SW PARTITIONING

Ref. Based algorithm Optimized metrics

Algo. Exact heuristic Exec

time

HW

area

Power

1 ILP * * *

2 B&B * * *

3 DP * * *

4 SA * * *

5 GA * * *

6 TS * * *

7 GR * * *

14 HC * * *

15 PSO * * *

16 BAT

Inspired

 * * *

17 Kernighan/

Lin

 * * *

18 Shortest path * * *

19 GA + B&B * * * *

20 Tree

Partitioning

 * * * *

21 KP + TS * * * *

III. FIRST PROPOSED APPROACH

The goal of the first proposed approach is to optimize

several metrics under the total hardware area constraint. In this

study, we consider the following metrics: the execution time,

the power consumption, the development time, the quality,

bandwidth and the memory usage.

The system (ES) is composed of 𝑁blocks, denoted as

𝐵 = {𝐵1, 𝐵2, 𝐵3 , … , 𝐵𝑛}. Each block 𝐵𝑖 can be implemented

either on hardware or on software.𝐻 denotes the set of blocks

to be assigned to hardware and𝑆denotes the set of blocks to be

assigned to software.

To each block𝐵𝑖considered implemented in hardware,

weassign a profit𝑃𝑖 and a weight 𝑎𝑖, the weight is supposed

tobe the area of the block in hardware, the profit is functionof

the different other metrics: execution time, development time,

power consumption, quality, bandwidth, memory usage. The

profit of each block is calculated using the formula in the

equation below:

𝑃𝑖 = 𝜆1. (
𝑃𝑐𝑜𝑛𝑠

𝑖𝑠 − 𝑃𝑐𝑜𝑛𝑠
𝑖ℎ

𝑃𝑐𝑜𝑛𝑠
𝑖𝑠) + 𝜆2. (

𝑇𝑒𝑥𝑒𝑐
𝑖𝑠 − 𝑇𝑒𝑥𝑒𝑐

𝑖ℎ

𝑇𝑒𝑥𝑒𝑐
𝑖𝑠) +

 𝜆3. (
𝑇𝑑𝑒𝑣

𝑖𝑠 − 𝑇𝑑𝑒𝑣
𝑖ℎ

𝑇𝑑𝑒𝑣
𝑖𝑠) + 𝜆4. (

𝑄𝑖ℎ− 𝑄𝑖𝑠

𝑄𝑖𝑠) + 𝜆5. (
𝐵𝑑

𝑖ℎ− 𝐵𝑑
𝑖𝑠

𝐵𝑑
𝑖𝑠) +

 𝜆6. (
𝑀𝑒𝑚

𝑖𝑠 − 𝑀𝑒𝑚
𝑖ℎ

𝑀𝑒𝑚
𝑖𝑠) (1)

For each block 𝐵𝑖:

- 𝑃𝑐𝑜𝑛𝑠
𝑖ℎ and 𝑃𝑐𝑜𝑛𝑠

𝑖𝑠 is respectively the power consumption

in hardware and in software.

- 𝑇𝑒𝑥𝑒𝑐
𝑖ℎ and 𝑇𝑒𝑥𝑒𝑐

𝑖𝑠 is respectively the time execution in

hardware and in software.

- 𝑇𝑑𝑒𝑣
𝑖ℎ and 𝑇𝑑𝑒𝑣

𝑖𝑠 is respectively the time of development

in hardware and in software, which may involve the IP

reuse aspect.

- 𝑄𝑖ℎ and 𝑄𝑖𝑠 is respectively the quality of the block in

hardware and in software.

- 𝐵𝑑
𝑖ℎ and 𝐵𝑑

𝑖𝑠 is respectively the bandwidth in hardware

and in software.

- 𝑀𝑒𝑚
𝑖ℎ and 𝑀𝑒𝑚

𝑖𝑠 is respectively the shared memory

access in hardware and in software.

- The coefficients 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, and 𝜆6 are

positive integers used to give more or less importance

to the associated criteria.

The objective is to find a partitioning (𝐻, 𝑆) for 𝐵such that:

 𝐻 ∩ 𝑆 = ∅

and 𝐻 ∪ 𝑆 = 𝐵

With the maximization of the whole profit of the blocks that

are implemented in hardware, while respecting the global

hardware area constraint𝐴:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒: ∑ 𝑃𝑖 ∗ 𝑥𝑖

𝑛

𝑖=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∑ 𝑎𝑖

𝑛

𝑖=1

∗ 𝑥𝑖 ≤ 𝐴

 (2)

Where 𝑥𝑖 is the block’s implementation (HW=1, SW=0).

IV. IMPLEMENTATION

In this section we implement the proposed approach

using three existent heuristic algorithms; the first algorithm

is the 0-1 Knapsack Problem algorithm, the second

algorithm is the Genetic Algorithm and the third algorithm

is the Simulated Annealing algorithm.

A. 0-1 Knapsack Problem algorithm

The 0-1 Knapsack Problem is defined as follows:

1- Given number of items, where each item has a weight

and a profit (integer numbers).

2- Given a knapsack with a maximum capacity (integer

number).

3- The problem consists of choosing the items for which

the total profit is maximized and the total weight

doesn’t exceed the knapsack’s capacity.

The problem described in the previsions section is a

0-1 Knapsack problem. The items are the blocks of the system

and the knapsack’s capacity is the hardware area constraint.

http://innove.org/ijist/

International Journal of Information Science & Technology –iJIST, ISSN : 2550-5114

Vol.2 No.2, 2018

http://innove.org/ijist/ 22

The weight of each item (block) is the value of its hardware

area, and its profit is calculated using (1).

In the first step, the profit of each block is calculated. If the

profit is negative, the block is the moved to the software set

(𝑆), elsewhere, the block is candidateto a hardware

implementation.

𝑀 is the number of blocks candidates to hardware

implementation. The pseudo-code ofthe 0-1 Knapsack

algorithm is presented in Fig. 1.

1) Input: The array that contains the weights (hardware

area)of the blocks𝑊[1 … 𝑀]

2) Input: The array that contains the profits of the

blocks 𝑉[1 … 𝑀]

3) Input: The capacity 𝐴

4) Create a matrix 𝑇[0 … 𝑀; 0 … 𝐴]

5) 𝑇 is initialized with 0s

6) 𝑇 is then filled as follows:

For𝑖 = 0 𝑡𝑜 𝑀, for𝑗 = 0 𝑡𝑜 𝐴

a) If 𝑗 ≤ 𝑊[𝑖] ∶ 𝑇[𝑖, 𝑗] = 𝑇[𝑖 − 1, 𝑗]

b) else:

 𝑇[𝑖, 𝑗] = max (𝑇[𝑖 − 1, 𝑗], 𝑉[𝑖] + 𝑇[𝑖 − 1, 𝑗 − 𝑊[𝑖])

7) Output: return 𝑇[𝑀, 𝐴]

Fig. 1. 0-1 Knapsack algorithm

The principle of the algorithm is to fill a matrix 𝑇 in

recursive way based on the weights and the profits of the

items.

The value of the last line and the last column of the

constructed matrix (𝑇[𝑀, 𝐴]) gives the maximum possible

profit. To find the selected items that make this maximum, an

additional algorithm is necessary. This algorithm is described

in Fig: 2.

1) 𝑖 = 𝑀; 𝑘 = 𝐴

2) 𝑤ℎ𝑖𝑙𝑒 𝑖 ≥ 1 𝑎𝑛𝑑 𝑘 ≥ 1

a) 𝑖𝑓 𝑉[𝑖, 𝑘] ≠ 𝑉[𝑖 − 1, 𝑘]:

i) mark the 𝑖𝑡ℎ block as selected

ii) 𝑖 = 𝑖 − 1

 iii) 𝑘 = 𝑘 − 𝑊[𝑖]

b) else:

 𝑖 = 𝑖 − 1

Fig. 2. 0-1 Knapsack algorithm: selected items

At the end, the selected blocks using KP algorithm are

moved to the hardware set, while the unselected blocks are

moved to the software set. The two constructed sets compose

the solution to the initial problem defined in the previous

section.

8) Example

The system is composed of four blocks; the profits and the

weight of each block are as follows:

TABLE II

KP PARAMETERS

Block Profit Weight

1 3 2

2 4 3

3 5 4

4 6 5

 The capacity (hardware area constraint) is 𝐴 = 5, and:

𝑊 = [2, 3, 4, 5]
𝑉 = [3, 4, 5, 6]

Using the algorithm of Fig. 1, the constructed matrix 𝑇 is

as follows:

TABLE III

CONSTRUCTED T MATRIX

0 0 0 0 0 0

0 0 3 3 3 3

0 0 3 4 4 7

0 0 3 4 5 7

0 0 3 4 5 7

 Using the algorithm of Fig. 2, the selected blocks are 1

and 2, therefore, the partitioning solution is:

𝑆 = {3, 4}

𝐻 = {1, 2}

B. Genetic Algorithm

The steps of the Genetic Algorithm are summarized in

Fig. 3:

1) Initialize the parameters of the GA

2) generation := 1

3) Randomly generate an initial population of candidate

solutions

4) Evaluate the population by computing the fitness of each

individual

5) while (termination condition is not met) do:

 a) Create a new population

 b) for each individual:

 i) Select a parent based on its fitness

 ii) Apply the crossover on the individual with its

 parents to produce an offspring

 iii) Accept the crossover based on the fitness of the

 offspring

 iv) Apply the mutation on the offspring

 v) Accept the mutation based on the fitness of the

 offspring

 vi) Add the offspring to the new population

 c) generation := generation + 1

 d) Replace the old population by the new population

 e) Evaluate the new population

6) end loop;

7) return the best individual
Fig. 3. Genetic Algorithm

http://innove.org/ijist/

International Journal of Information Science & Technology –iJIST, ISSN : 2550-5114

Vol.2 No.2, 2018

http://innove.org/ijist/ 23

An initial population (candidate solutions) is randomly

generated. Then, each individual of the population is

evaluated, its fitness (cost) is the sum of its hardware blocks

profits. The termination test determines whether the process

will stop or goes to the next generation. The process stops

when the cost of the best solution (individual) for each

generation no longer changes for a certain number of

generations. When the process continues, a new population

(generation) will replace the old one.

To generate a new population, three steps are applied on

each individual. First step is the selection of the parent, in

which the roulette wheel selection method is used; the

individual with the highest fitness has more chance to be

selected. Second, the process of crossover is applied to the

individual with its parent to produce a new individual

(offspring). If the offspring has less fitness or its hardware

area is greater than the area constraint, then the crossover is

rejected for this individual. The last step is the process of

mutation, in this latter, the individual is randomly mutated

(randomly selected blocks change the implementation between

HW and SW) to generate a new offspring. Again, if the

offspring has less fitness or its hardware area is greater than

the area constraint, then the mutation is rejected for this

individual. Then the algorithm iterates from the evaluation

step. The process of elitism can also be applied in order to

keep some few individuals with highest fitness from

generation to generation.

C. Simulated Annealing algorithm

Simulated Annealing (SA) algorithm is based on the

analogy between the solid annealing and the combinatorial

optimization problem. The steps of the algorithm are

summarized in Fig. 4:

1) Construct initial configuration:

𝑥𝑛𝑜𝑤 = (𝐻𝑊0, 𝑆𝑊0)

2) Initialize Temperature:

𝑇 = 𝑇𝑖/* 𝑇𝑖 :Initial Temperature */

3) 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑇𝑙 do: /* 𝑇𝑙 : temperature length */

a) Generate randomly a neighboring solution:

𝑥𝑛𝑒𝑥𝑡 ∈ 𝑁(𝑥𝑛𝑜𝑤)

b) Compute change of cost function:

∆𝐶 = 𝐶(𝑥𝑛𝑒𝑥𝑡) − 𝐶(𝑥𝑛𝑜𝑤)
i) 𝑖𝑓 ∆𝐶 ≤ 0 𝑡ℎ𝑒𝑛:

𝑥𝑛𝑜𝑤 = 𝑥𝑛𝑒𝑥𝑡

ii) else :

 a) Generate q:=random(0,1)

 b)𝑖𝑓 𝑞 < 𝑒
−∆𝐶

𝑇 then:

𝑥𝑛𝑜𝑤 = 𝑥𝑛𝑒𝑥𝑡

 c) Set new temperature:

𝑇 = 𝛼 ∗ 𝑇

 /* 𝛼 : cooling ratio */

4) if stopping criterion not met then:

 Go to Step 3

5) return solution corresponding to the minimum cost

function
Fig. 4. Simulated annealing algorithm

First, the algorithm starts by choosing an initial

temperature, and randomly creates an initial solution (a HW

set and a SW set). Second, in the generation step, a neighbor

solution is created by randomly moving a block of the current

solution from one set to the other set. Third, the process of

acceptation is applied; the acceptance is function of the energy

of the current solution, the energy of the neighbor solution and

the actual temperature. The energy of each solution is related

to the profit defined in (1). Fourth, the temperature is reduced.

Lastly, the algorithm iterates from the generation step until

certain condition is met (the energy doesn’t change).

V. SECOND PROPOSED APPROACH

The objective of the second proposed approach is to

optimize the total hardware area under the constraints on the

other metrics. The considered metrics: the execution time, the

power consumption and the memory usage. The system is

represented in the form of a directed acyclic graph (DAG) as

shown in the example of Fig. 5.

Fig. 5. Example of DAG representation

 Each block 𝐵𝑖 has the following values:

- 𝑃𝑐𝑜𝑛𝑠
𝑖ℎ and 𝑃𝑐𝑜𝑛𝑠

𝑖𝑠 : respectively the power consumption in

hardware and in software.

- 𝑇𝑒𝑥𝑒𝑐
𝑖ℎ and 𝑇𝑒𝑥𝑒𝑐

𝑖𝑠 : respectively the time execution in

hardware and in software.

- 𝐶𝑖ℎ and 𝐶𝑖𝑠 : respectively the cost of the hardware area

of the block in hardware and in software.

- 𝑀𝑒𝑚
𝑖ℎ and 𝑀𝑒𝑚

𝑖𝑠 : respectively the shared memory access

in hardware and in software.

- 𝑥𝑖 represents the block’s implementation (in HW = 1,

in SW = 0)

As used in [22], the total cost and the total power

consumption are given by (3) and (4):

𝐶 = ∑ [(𝑥𝑖 ∗ 𝐶𝑖ℎ) + (1 − 𝑥𝑖) ∗ 𝐶𝑖𝑠]𝑛
𝑖=1 (3)

𝑃 = ∑ [(𝑥𝑖 ∗ 𝑃𝑐𝑜𝑛𝑠
𝑖ℎ) + (1 − 𝑥𝑖) ∗ 𝑃𝑐𝑜𝑛𝑠

𝑖𝑠]𝑛
𝑖=1 (4)

http://innove.org/ijist/

International Journal of Information Science & Technology –iJIST, ISSN : 2550-5114

Vol.2 No.2, 2018

http://innove.org/ijist/ 24

Each block 𝐵𝑖 is supposed to be executed upon the

reception of the corresponding data from its previous block

𝐵𝑖+1; therefore, as adopted in [22], the total execution time is

the sum of execution time of each block of the system:

𝑇 = ∑ [(𝑥𝑖 ∗ 𝑇𝑒𝑥𝑒𝑐
𝑖ℎ) + (1 − 𝑥𝑖) ∗ 𝑇𝑒𝑥𝑒𝑐

𝑖𝑠]𝑛
𝑖=1 (5)

We consider also that the total shared memory usage of the

system is the sum of the shared memory usage of each block

of the system:

𝑀 = ∑ [(𝑥𝑖 ∗ 𝑀𝑒𝑚
𝑖ℎ) + (1 − 𝑥𝑖) ∗ 𝑀𝑒𝑚

𝑖𝑠]𝑛
𝑖=1 (6)

A. Problem formulation

We consider the problem that consists of minimizing the

cost of the hardware area with the respect of the constraints on

the other metrics:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝐶

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:

𝑃 ≤ 𝑃𝑚𝑎𝑥

𝑇 ≤ 𝑇𝑚𝑎𝑥

𝑀 ≤ 𝑀𝑚𝑎𝑥

 (7)

 Let:

𝐶𝑠 = ∑ 𝐶𝑐𝑜𝑛𝑠
𝑖𝑠

𝑛

𝑖=1

𝑃𝑠 = ∑ 𝑃𝑐𝑜𝑛𝑠
𝑖𝑠

𝑛

𝑖=1

𝑇𝑠 = ∑ 𝑇𝑒𝑥𝑒𝑐
𝑖𝑠

𝑛

𝑖=1

𝑀𝑠 = ∑ 𝑀𝑖𝑠

𝑛

𝑖=1

And for each block 𝐵𝑖:

𝑐𝑖 = 𝐶𝑖ℎ − 𝐶𝑖𝑠

𝑝𝑖 = 𝑃𝑐𝑜𝑛𝑠
𝑖ℎ − 𝑃𝑐𝑜𝑛𝑠

𝑖𝑠

𝑡𝑖 = 𝑇𝑒𝑥𝑒𝑐
𝑖ℎ − 𝑇𝑒𝑥𝑒𝑐

𝑖𝑠

 𝑚𝑖 = 𝑀𝑒𝑚
𝑖ℎ − 𝑀𝑒𝑚

𝑖𝑠

As 𝐶𝑠
 is a constant value, the problem of (7) can be

formulated as follows:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ∑ 𝑐𝑖 ∗

𝑛

𝑖=1

𝑥𝑖

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:

∑ 𝑝𝑖 ∗

𝑛

𝑖=1

𝑥𝑖 ≤ 𝑃𝑚𝑎𝑥 − 𝑃𝑠

∑ 𝑡𝑖 ∗

𝑛

𝑖=1

𝑥𝑖 ≤ 𝑇𝑚𝑎𝑥 − 𝑇𝑠

∑ 𝑚𝑖 ∗

𝑛

𝑖=1

𝑥𝑖 ≤ 𝑀𝑚𝑎𝑥 − 𝑀𝑠

(8)

The cost of the hardware area is bigger when the block 𝐵𝑖 is

implemented in HW; therefore the coefficients 𝑐𝑖 are all

positives. Consequently, the problem described in (8) can be

resolved using the Balas’ technique.

B. Balas Method

The Balas’ algorithm is explained in [23]. Fig. 6 shows a

simplified version of the steps of the algorithm.

Fig. 6. Simplified version Balas’ algorithm

Set S= 0

Attempt to fathom S.

Is the attempt successful?

If the best feasible

completion of S has

been found and is better

than the incumbent,

store it as the new

incumbent.

Augment S on the

right by 0 or 1 on

any free variable.

Locate the rightmost element of S

which is not fathomed. If none

exists, terminate. Otherwise,

replace the element by its

complement and delete all elements

to the right.

http://innove.org/ijist/

International Journal of Information Science & Technology –iJIST, ISSN : 2550-5114

Vol.2 No.2, 2018

http://innove.org/ijist/ 25

The method requires a LP in canonical form with 𝑐𝑖 ≥ 0 :

min 𝑧 = ∑ 𝑐𝑖 ∗

𝑛

𝑖=1

𝑥𝑖

𝑥𝑖 ∈ {0, 1}

∑ 𝑎𝑖𝑗 ∗

𝑛

𝑖=1

𝑥𝑖 ≤ 𝑏𝑗 1 ≤ 𝑗 ≤ 𝑚

 (9)

The method is a tree method which progressively fixe to 0

or to 1 the variables 𝑥𝑖.

A vertex 𝑆𝑡 of the tree corresponds to a partial solution, for

which a subset 𝐹(𝑡) of variablesxi are fixed to 0 or 1.The

remaining variables form the set of free variables 𝐿(𝑡). In

𝐹(𝑡), we distinguish two subsets, the subset of variables fixed

to 0 noted 𝐹0(𝑡), and the subset of variables fixed to 1 noted

𝐹1(𝑡). We choose a variable 𝑥𝑖 from 𝐿(𝑡) and we set it to 0 or

1 which gives two new nodes (children).

For each new created node 𝑆𝑡, the problem (9) becomes as

follows:

min 𝑧𝑡 = ∑ 𝑐𝑖

𝑖∈𝐿(𝑡)

∗ 𝑥𝑖 + ∑ 𝑐𝑖

𝑖∈𝐹1(𝑡)

∑ 𝑎𝑖𝑗 ∗ 𝑥𝑖 ≤ 𝑏𝑗 − ∑ 𝑎𝑖𝑗 = 𝑠𝑗1 ≤ 𝑗 ≤ 𝑚

𝑖∈𝐹1(𝑡)𝑖∈𝐿(𝑡)

 (10)

1) Node evaluation

After the creation of a new node 𝑆𝑡, it is evaluated. As the

objective is to minimize 𝑧𝑡, and as all the coefficients 𝑐𝑖 are

all positive, the evaluation of the node 𝑆𝑡 is as follows:

𝐸𝑣𝑎𝑙(𝑆𝑡) = ∑ 𝑐𝑖𝑖∈𝐹1(𝑡) (11)

2) Node fathoming

After the creation of a new node𝑆𝑡, the following tests are

executed in order:

a. Test 1:

𝑆𝑡 is abandoned if the evaluation of the node is

bigger than the provisional solution.

b. Test 2:

𝑆𝑡Is a terminal node if the evaluation of the node is

less than the provisional solution and all 𝑠𝑗 are

positives.

c. Test 3:

𝑆𝑡 is abandoned if the solution is not realizable.

This is the case for which some constraints are not

satisfied:

∃ 𝑗 ∈ [1, 𝑚]: ∑ 𝑀𝑖𝑛(0, 𝑎𝑖𝑗) > 𝑠𝑗

𝑖∈𝐿(𝑡)

d. Test 4:

For any constraint (j), if the sum of negative 𝑎𝑖𝑗

but an 𝑎𝑝𝑗 is bigger than 𝑠𝑗 then 𝑥𝑝 is set to 1,and

if the sum of negative 𝑎𝑖𝑗 and a positive 𝑎𝑝𝑗 is

bigger than 𝑠𝑗 then 𝑥𝑝 is set to 0:

𝑖𝑓 ∃ 𝑗 ∈ [1, 𝑚] 𝑎𝑛𝑑 ∃ 𝑝 ∈ (𝑡) ∶

∑ 𝑀𝑖𝑛(0, 𝑎𝑖𝑗) + |𝑎𝑝𝑗| > 𝑠𝑗

𝑖∈𝐿(𝑡)

Then:

 𝑥𝑝 = 0 𝑖𝑓 𝑎𝑝𝑗 > 0

 𝑥𝑝 = 1 𝑖𝑓 𝑎𝑝𝑗 < 0

3) The choice of branching

The adopted method is called depth first; the deepest node

is developed first. For the separation of branch on a variable𝑥𝑖,

the child node “𝑥𝑖 = 1”is treated first. An index 𝑖 is associated

to each fixed variable in the form of “+𝑗” if 𝑥𝑖 is fixed to 1

and in the form of “−𝑗” if 𝑥𝑖 is fixed to 0.

Therefore, in the backtrack, the algorithm goes up until it

reaches the top level above the variable from which the

fathoming was done, if it is negative, it corresponds to a

processed child, if it is positive, the algorithm takes the other

branch, which corresponds to the complement of the value of

that variable, and tries to fathom the new partial solution.

4) Decision of node separation

Let 𝑄(𝑡) = { 𝑗 |𝑠𝑗 < 0 } the set of lines for which the

constraint is negative.

 And 𝑅(𝑡) the set indexes of free variables 𝑥𝑖 having at least

one negative coefficient 𝑎𝑖𝑗 from 𝑄(𝑡):

𝑅(𝑡) = {𝑖 ∈ 𝐿(𝑡), ∃ 𝑗 ∈ 𝑄(𝑡), 𝑎𝑖𝑗 < 0}.

Let: 𝑃(𝑡) = ∑ 𝑠𝑗 = ∑ min (0, 𝑠𝑗)𝑚
𝑗=1𝑗∈𝑄(𝑡) .

The proximity of a solution if 𝑥𝑖 is set to 1 is:

𝑃(𝑡, 𝑖) = ∑ min (0, 𝑠𝑗 − 𝑎𝑖𝑗)

𝑚

𝑗=1

 (12)

 The choice of the variable of separation 𝑖∗ is the variable

with the maximum proximity value:

𝑃(𝑡, 𝑖∗) = 𝑀𝑎𝑥{𝑃(𝑡, 𝑖)/𝑖 ∈ 𝑅(𝑡)}

 (13)

http://innove.org/ijist/

International Journal of Information Science & Technology –iJIST, ISSN : 2550-5114

Vol.2 No.2, 2018

http://innove.org/ijist/ 26

C. Example

In this example, we consider a system (ES) with 5 blocks

𝐵 = {𝐵1, 𝐵2, 𝐵3 , 𝐵4, 𝐵5}.

The problem (8) to optimize is as follows:

𝑀𝑖𝑛: 3𝑥1 + 5𝑥2 + 4𝑥3 + 10𝑥4 + 𝑥5

2𝑥1 − 3𝑥3 − 4𝑥4 + 𝑥5 ≤ −2 (1)

−2𝑥2 − 2𝑥3 − 𝑥4 ≤ −4 (2)

𝑥1 − 2𝑥2 + 2𝑥3 − 𝑥4 + 3𝑥5 ≤ 4 (3)

𝑥𝑖 ∈ {0,1}, 1 ≤ 𝑖 ≤ 5

1) The root node 𝑆0

For the node 𝑆0:

𝐿(0) = {1, 2, 3, 4, 5}

𝑄(0) = {1, 2},

𝑅(0) = {2, 3, 4}

The evaluation of 𝑆0is 0. The proximity calculation is given

in table IV.

TABLE IV

PROXIMITY CALCULATION FOR 𝑆0

Coefficients and second members 𝑠𝑗 − 𝑎𝑖𝑗

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑆0 𝑥2

= 1

𝑥3

= 1

𝑥4

= 1

2 0 -3 -4 1 -2 -2 1 2

0 -2 -2 -1 0 -4 -2 -2 -3

1 -2 2 -1 3 4 6 2 5

 𝑃(0) -4 -2 -3

The maximum proximity is obtained at 𝑥3, 𝑥3is therefore

the point of separation. We start by the branch 𝑥3 = 1, the

branch 𝑥3 = 0 will be processed later.

2) The node 𝑆1

For the node 𝑆1:
𝑥3 = 1

𝐿(1) = {1,2,4,5}

𝐹1(1) = {3}

𝑄(1) = {2}

𝑅(1) = {2,4}

The evaluation of 𝑆1is 4. The completion of the other

variables (𝑥1 = 𝑥2 = 𝑥4 = 𝑥5 = 0) gives a non-realizable

solution as the constraints (2) is violated (−2 ≤ −4),

therefore 𝑆1 is not a provisional solution.

The proximity calculation for 𝑆1is given in table V.

TABLE V

PROXIMITY CALCULATION FOR 𝑆1

Coefficients and second

members

𝑠𝑗 − 𝑎𝑖𝑗

𝑥1 𝑥2 𝑥4 𝑥5 𝑆1 𝑥2

= 1

𝑥4

= 1

2 0 -4 1 1 1 5

0 -2 -1 0 -2 0 -1

1 -2 -1 3 2 4 3

 𝑃(1) 0 -1

The maximum proximity is obtained at 𝑥2, 𝑥2 is therefore

the point of separation. We start by the branch 𝑥2 = 1, the

branch 𝑥2 = 0 will be processed later. The solution 𝑆1is then

marked with “+j”.

3) The node 𝑆2

For the node 𝑆2:

𝑥3 = 1, 𝑥2 = 1

𝐿(2) = {1, 4, 5}

𝐹1(2) = {2, 3}

The evaluation of 𝑆2is 9. The completion of the other

variables (𝑥1 = 𝑥4 = 𝑥5 = 0) gives a realizable solution,

therefore 𝑆2 is a provisional solution and 𝑆2 is a terminal node.

4) The node 𝑆3

This node corresponds to a backtrack situation, we go back

until the top of the branch, in this case we go back until 𝑆0 and

we process the branch 𝑥3 = 0 and we mark 𝑆0 with “-j“. The

node 𝑆3 is abandoned as it leads to a non-realizable solution.

In fact, the test 3 fails, because for the constraint (2) we have:

∑ 𝑀𝑖𝑛(0, 𝑎𝑖𝑗) > 𝑠𝑗𝑖∈𝐿(𝑡) :

−3 > −4

5) The node 𝑆4

We go down until a node marked with “+j“. In this case, we

process the right hand of 𝑆1 and we mark 𝑆1 with “-j“.

For 𝑆4:

𝑥3 = 1, 𝑥2 = 0

𝐿(4) = {1,4,5}

𝐹1(4) = {3}

𝐹0(4) = {2}.

The node 𝑆4 is abandoned as it leads to a non realizable

solution. In fact, the test 3 fails, because for the constraint (2)

we have:

∑ 𝑀𝑖𝑛(0, 𝑎𝑖𝑗) > 𝑠𝑗𝑖∈𝐿(𝑡) :

−1 > −2

6) Termination

The algorithm terminates there is no node to process. The

solution found in the node 𝑆2 is the optimal solution:

𝑥1 = 𝑥4 = 𝑥5 = 0 and 𝑥2 = 𝑥3 = 1, the evaluation is 9. The

developed tree is shown in Fig. 7.

Fig. 7.Tree of Balas’ method

http://innove.org/ijist/

International Journal of Information Science & Technology –iJIST, ISSN : 2550-5114

Vol.2 No.2, 2018

http://innove.org/ijist/ 27

The solution of the HSP problem is then:

- The blocks {𝐵2, 𝐵3} are in HW

- The blocks {𝐵1 , 𝐵4, 𝐵5} are in SW.

VI. EXPERIMENTS

In this section we give the results of experiments for the

first proposed approach.

We implemented the three algorithms (0-1 Knapsack

Problem algorithm, Genetic Algorithm, Simulated Annealing

algorithm) in Java, and made a number of tests for different

number of blocks. The metrics, the coefficients and the

hardware area constraint are generated randomly. The metrics

of each block are reel numbers and the software execution

time of each block is always bigger than the hardware

execution time. The coefficients are strictly positive integers.

The hardware area constraint is and integer number smaller

than the sum of the hardware area of all blocks.

Fig. 8 gives the comparison of the profit obtained using the

three algorithm (KP, GA and SA). The results show that the

profit obtained using KP algorithm and GA algorithm are

almost identical and always bigger than the profit obtained

using SA algorithm. GA and SA algorithms fail to converge in

some cases, especially with small values of hardware area

constraint.

Fig. 8. Comparison between the profits of algorithms

Fig. 9 gives the hardware area obtained for each algorithm.

In case of non-convergence, the GA and SA algorithms don’t

respect the hardware area constraint. This latter is always

respected by KP algorithm.

Fig. 9. HW area of algorithms vs. HW area constraint

Fig. 10 gives a comparison between the algorithms in term

of their execution time. The results show that KP and SA are

very fast comparing to GA algorithm.

Fig. 10. Algorithms’ execution time comparison

VII. CONCLUSION

In this article, we proposed two novel approaches to solve

the multi-objective Hardware Software Partitioning problem.

The first approach aims to optimize several metrics under a

constraint on the global hardware area. The second approach

has the objective of minimizing the global hardware area

while respecting the constraints on the other metrics. The

principle of the first approach is based on the profit obtained

when implementing each block in hardware. The profit is a

weighted sum function of each metric’s benefit when the

block is implemented in hardware over its implementation in

software. The approach is implemented using 0-1 Knapsack

Problem algorithm and compared to Genetic Algorithm and

Simulated Annealing algorithm. Experimental results show

that the KP algorithm is the best choice to implement the

proposed approach; in fact, KP is very fast and gives best

solutions comparing to GA and SA algorithms. The principle

of the second approach is based on Balas method. As future

works, we will implement the second proposed approach, and

compare the two approaches with recent algorithms. We will

also demonstrate their effectiveness on some practical

examples.

REFERENCES

[1] R. Niemann and P. Marwedel, “Hardware/software partitioning using

integer programming,” in Proceedings of the 1996 European conference on
Design and Test, 1996, p. 473.

[2] W. Jigang and S. Thambipillai, “A branch-and-bound algorithm for

hardware/software partitioning,” in Proceedings of the Fourth IEEE
International Symposium on Signal Processing and Information Technology,

2004, pp. 526–529.

[3] P. V. Knudsen and J. Madsen, “Pace: A dynamic programming algorithm
for hardware/software partitioning,” in Proceedings of the 4th International

Workshop on Hardware/Software Co-Design, 1996, p. 85.

[4] Y. Jing, J. Kuang, J. Du, and B. Hu, “Application of improved simulated
annealing optimization algorithms in hardware/software partitioning of the

reconfigurable system-on-chip,” Communications in Computer and

Information Science, vol. 405, 2014.
[5] C. W. Jinfu Feng, Junhua Hu and D. Qi, “Hardware/software partitioning

algorithm based on genetic algorithm,” Journal of Computers, vol. 9, pp.

1309–1315, 2014.
[6] J. Wu, P. Wang, S.-K. Lam, and T. Srikanthan, “Efficient heuristic and

tabu search for hardware/software partitioning,” The Journal of Super

computing, vol. 66, pp. 118–134, 2013.
[7] J. W. Tang, Y. W. Hau, and M. N. Marsono, “Hardware/software

partitioning of embedded system-on-chip applications,” in proceedings of the

IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-
SoC), 2015, pp. 331–336.

http://innove.org/ijist/

International Journal of Information Science & Technology –iJIST, ISSN : 2550-5114

Vol.2 No.2, 2018

http://innove.org/ijist/ 28

[8] L. Zhang, C. Xu, T. Zheng, and T. Li, “Hardware/software partitioning

based on greedy algorithm and simulated annealing algorithm,” Journal of

Computer Applications, vol. 33, no. 07, p. 1898, 2013.
[9]Chaumont, P. A practical introduction to hardware/software codesign. New

York: Springer. 2013.

[10] Banerjee, S. &Dutt, N. Very fast simulated annealing for hw-sw
partitioning. Technical Report, CECS-TR-04--17. 2004.

[11]Madhura, P. & Marek R. & Witold P. Genetic algorithms for hardware

software partitioning and optimal resource allocation. Journal of Systems
Architecture, l (53), 339 – 354. 2007

[12]Knerr, B. &Holzer, M. & Rupp, M. (2007).Novel genome coding of

genetic algorithms for the system partitioning problem. International
Symposium on Industrial Embedded Systems, SIES'07.134-141.

[13] Lin, G. & Zhu, W. & Ali, M. A tabu search-based memetic algorithm for

hardware/software partitioning. Mathematical Problems in Engineering. 2014.
[14]Sim, J. &Mitra, T. & Wong, W. Defining neighborhood relations for fast

spatial-temporal partitioning of applications on reconfigurable architectures.

International Conference on International Conference on, 121-128. 2008
[15]Farmahini-Farahani, A. & Kamal, M. & Fakhraie, S. & Safari, S. HW/SW

partitioning using discrete particle swarm. Proceedings of the 17th ACM

Great Lakes symposium on VLSI, 359-364. 2007
[16]Prakasam, S. & Venkatachalam, M. &Saroja, M. &Pradheep, N.

&Gowthaman P. A novel bat inspired algorithm for hardware-software

codesign partitioning. International Journal of Multidisciplinary Research and
Development, l (3), 88-92. 2016

[17]Knerr, B. &Holzer, M. & Rupp, M. HW/SW partitioning using high level

metrics. 2004
[18] Wu, J. &Srikanthan, T. & Zou, G. New model and algorithm for

hardware/software partitioning. Journal of Computer Science and Technology,

l(23), 644-651. 2008
[19] J. Resano, D. Mozos, E. Perez, H. Mecha, and J. Septien, “A hardware/

software partitioning and scheduling approach for embedded systems with

low-power and high performance requirements,” in International Workshop
on Power and Timing Modeling, Optimization and Simulation, 2003, pp. 580–

589.
[20] E. Sha, L. Wang, Q. Zhuge, J. Zhang, and J. Liu, “Power efficiency for

hardware/software partitioning with time and area constraints on mpsoc,”

International Journal of Parallel Programming, vol. 43, no. 3, pp. 381–402,

2015.

[21] W. Shi, J. Wu, S.-k. Lam, and T. Srikanthan, “Algorithms for bi-

objective multiple-choice hardware/software partitioning,” Computers &
Electrical Engineering, vol. 50, pp. 127–142, 2016.

[22] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli, “Hardware/software

partitioning with iterative improvement heuristics,” in Proceedings of the 9th
International Symposium on System Synthesis, 1996, pp. 71–.

[23] A. Geoffrion, “Integer Programming by Implicit Enumeration and Balas’

Method”, in SIAM Review, Vol. 9, No. 2 pp. 178-190, April 1967

http://innove.org/ijist/

