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    Abstract— In this paper, distributed constant false alarm 

rate (CFAR) detection in homogeneous and heterogeneous 

Gaussian clutter using Biogeography Based Optimization 

(BBO) method is analyzed. For independent and dependent 

signals with known and unknown power, optimal thresholds 

of local detectors are computed simultaneously according to a 

preselected fusion rule. Based on the Neyman-Pearson type 

test, CFAR detection comparisons obtained by the genetic 

algorithm (GA) and the BBO tool are conducted. Simulation 

results show that this new scheme in some cases performs 

better than the GA method described in the open literature in 

terms of achieving fixed probabilities of false alarm and 

higher probabilities of detection.   

 
Index Terms— CAdetection,CFARBBO, distributed -

CFAR, OS-CFAR, fusion rule. 

 

I. INTRODUCTION 

 n an automatic radar detection system, range resolution 

cells are used to estimate the background level and a 

threshold is then formed to test for the presence of a 

target in the cell under test (CUT). Centralized CFAR 

detectors operating in homogeneous and heterogeneous 

clutter are initially developed in terms of different test 

statistics. For instance, the cell averaging CFAR (CA-

CFAR), the maximum likelihood CFAR (ML-CFAR), the 

logt-CFAR and the geometric mean CFAR (GM-CFAR) 

algorithms are all suited when the clutter is independent 

and identically distributed (iid) in the reference window   

[1-4]. In the realistic case when interfering targets and 

clutter edge situations are present, CFAR procedures based 

on the censoring of cells resolution contents like the order 

statistic CFAR (OS-CFAR), censored mean level CFAR 

(CMLD-CFAR), censored maximum likelihood CFAR 

(CML-CFAR) and Weber-Hykin CFAR (WH-CFAR) are 

proposed to maximize the detection probability [1].  
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Another way to increase the detection performance of targets 

is to use multi-static radars (sensors) which are distributed 

geographically [2-5]. In this system, all CFAR detectors are 

executed together and local decisions are then made. Form 

these binary declarations, a fusion rule must be applied at the 

fusion center to get the global binary decision. Compared to 

CFAR detectorsdecentralizedstandard CFAR detectors,  

require the optimization of unknown parameters (i.e., 

thresholds multipliers, ti and ranked cells orders, Ki) in the 

expressions of the overall false alarm and detection 

probabilities. In this context, Blum and Qiao [3] applied OS-

CFAR detection techniques to a distributed detection system 

with dependent observations from sensor to sensor under the 

assumption of weak signals. The best thresholds were given 

for schemes employing either an “AND” or “OR” fusion rule 

for specific cases. In all of the cases, the “OR” fusion rule 

provided better performance than the “AND” fusion rule for 

false alarm probabilities larger than some critical value. In 

[6], the performance of multi-static radar system for both 

CA-CFAR and OS-CFAR for homogeneous and 

heterogeneous backgrounds by using the GA is also 

investigated. For independent signals with known power, the 

trends of the probability of detection Pd and the optimum 

rank K in the fusion center are presented. With respect to 

other parameters like ti , Ci, and Ki, the trends seem still not 

very clear because of the sensitive property of the 

performance. For dependent signals with unknown power, 

the obtained results show that better results can be found 

with the GA approach. 

toIn this work, we attempt detectiontheimprove

performance of decentralized CA-CFAR and OS-CFAR 

detectors in presence of Gaussian clutter presented in [6]. To 

this effect, the BBO algorithm which is constructed 

principally by immigration and emigration operators is used 

to find optimal values of local thresholds. Based on the 

Neyman- test,Pearson type test, CFAR detection comparisons 

obtained by the GA and the BBO tools are presented. 

Simulation results show that this new scheme in some cases 

performs better than the GA method described in the 

literature in terms of achieving lower probabilities of false 

alarm and higher probabilities of detection. 

In the following, the paper is organized as follows. Section 2 

reviews the overall expressions of false alarm and detection 

probabilities in Gaussian background for CAdistributed -

CFAR and OS-CFAR detectors. Section 3 describes the 

operation of GA and BBO algorithms for parameters finding 
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of the distributed CA-CFAR and OS-CFAR systems using 

“AND” and “OR” fusion rules. Section 4 illustrates a series 

of Swerling 1 target CFAR detection comparisons using GA 

and BBO tools. Finally, Section 5 reports some concluding 

remarks.    

II. DISTRIBUTED CA-CFAR AND OS-CFAR 

DETECTORS 

Recall that at the output of square law detector, centralized 

CA-CFAR and OS-CFAR detectors are suited for 

homogeneous and heterogeneous background respectively 

(see Fig. 1). The scale factor  controls the desired value 

of the false alarm probability and a target is declared when 

the clutter intensity in the cell under test (CUT) exceeds the 

adaptive detection threshold T. A set of the data in the 

reference window x1, x2, …, xN are used for real time 

estimates of the clutter power, Q. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1.Centralized CA-CFAR and OS-CFAR detectors in presence 

of Gaussian clutter 

 

Expression of Q in terms of recorded data is highly 

dependent on the situation of the clutter background. In 

Gaussian noise case and according to the two hypotheses 

H1 (Target signal plus Gaussian noise) and H0 (Gaussian 

noise only), corresponding probability density functions 

(pdfs) of the CUT are given by 
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where b and a are respectively the intensities of the clutter 

and the target of interest. From [1], calculation of the false 

alarm probability Pf and the detection probability Pd for 

CA-CFAR detection is given by 
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Integrals of (2) are resolved to yield compact expressions 

of Pf  and Pd as 
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Similarly, Pf and Pd of OS-CFAR detector are computed 

using the following integrals 
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(4) 

Integrals of (4) are calculated to be  
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From the past two decades, distributed signal 

detection schemes have received significant attention, but 

usually under the assumption of stationary observations 

which are independent from sensor to sensor [4, 6]. The 

parallel structure of distributed CFAR detection is 

highlighted in Fig. 2. Each local CFAR detector provides 

its binary decision and then transmits it to the fusion center. 

The n received decisions are then combined to yield a 

global decision according to “AND”, “OR” or “k” out of 

“n“fusion rule. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Distributed CFAR processor system. 

 

In the presence of Gaussian background, two situations 

can be occurred for decentralized CFAR detection [4, 6]; 

independent signals with known power and non stationary 

observations where the signal observations are assumed to 

be dependent from sensor to sensor. In the following 

section, we give explicit formulas of the total false alarm 

and detection probabilities when “AND” and “OR” fusion 

rules are taken into account in the fusion center. 

 

A. Independent signals with known power 

Supposing that we have n detectors, the data fusion 

center determines the presence of a target in the cell under 

test (CUT) if at least k detectors have made the same 

decision. For n receivers this represents all the possible 
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cases between the rule “OR” (k =1) and the “AND” rule 

(k=n). We assume an environmental interference with a 

Gaussian probability density function (pdf) for the in-phase 

and quadrature components, and targets having a similar 

pdf with a slow fluctuation (Swerling I model). The 

following false alarm rate probability, Pf and detection 

probability, Pd for distributed CA-CFAR detector in 

homogeneous background are given in [6]. 

 

(i) “AND” fusion rule:  

In this case, Pf and Pd hold the following formulas 
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where Ni, i=1, …, n is the total number of estimation cells 

of the detector i, 
iii

NC=t / is the scale factor and Si is the 

SNR (signal-to-noise ratio). 

 

(ii) “OR” fusion rule:  

In this case, corresponding expressions of Pf and Pd are 
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For distributed OS-CFAR detection, the probabilities of 

false alarm and detection in heterogeneous background are 

also given in [6]. 

 

(iii) “AND” fusion rule: 

 For this situation, Pf and Pd are expressed as 
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where Ki is the ranked cell order at the detector i. 

 

(iv) “OR” fusion rule:  

Here, Pf and Pd are 
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B. Dependent signals with unknown power 

In [4], the authors analyzed the case where the signal 

observations are assumed to be dependent from sensor to 

sensor and weak narrowband random signal are observed in 

additive Gaussian noise-plus-clutter of unknown power. 

Their results are very useful especially when it is difficult 

to get accurate estimation of the SNRs and in cases where 

the SNRs are varying. Taking into account the “AND” and 

“OR” fusion rules, we use the formulations in [4]. In order 

to obtain the best performance of a given multi-static radar 

system, we can choose the thresholds t1. . . ., tn, to 

maximize )0("2

d
P   subject to the false alarm 

constraint,
0

=
f

P  

 

(i) “AND” fusion rule:  

For the “AND” rule, the equations of Pf  and )0("

d
P  are 

given by  
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(ii) “OR” fusion rule:  

For the “OR” rule, the equations of Pf  and )0("

d
P  are given 

by 
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If the number of local detectors is equal to 3, the 

“MAJORITY” fusion rule can be considered for which the 

Pf and Pd are given by 
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III OPTIMIZATION METHODS 

To solve the above detection problem, we propose in 

this work a flexible approach using the BBO to give the 

global optimal results in different situations. Each 

chromosome is a vector of the parameters of Pd and Pf at 

the fusion center. The lengths of the chromosomes for CA-

CFAR and OS-CFAR are n and 2n respectively, where n is 

the number of sensors in the defined multi-static radar 

system. To optimize the system parameters, GA and BBO 

tools are used to find specifically optimum thresholds 

multipliers. This involves the maximization of the overall 

Pd while keeping the overall Pf constant. In the sense of the 

N-P criterion and in the case of independent signals with 
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known power, the fitness or objective function to be 

minimized by the BBO algorithm is [6].  
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In the case of dependent signals with unknown power, a 

third term given in (5) and (6) is added in (8). Hence [6] 

 


=

−+

−+−=

n

i

iii

fdii

KNtgKNtgw

PwPwKtFitness

2

1113

02

"2

1

),,(),,(                   

)0(1),( 

    (14) 

1
w ,

2
w and 

3
w are the weights parameters to adjust the 

convergence of the BBO. 

 

A. Genetic algorithm method 

Genetic algorithms are gradient free parallel-

optimization algorithms that use a performance criterion 

for the evaluation and a population of possible solutions to 

search for a global optimum [2] [7-8]. The manipulation is 

done by the genetic operators that work on the 

chromosomes in which the parameters of possible solutions 

are encoded. In each generation of the GA, the new 

solutions replace the solutions in the population that are 

selected for deletion. In real-coded GA, the variables 

appear directly in the chromosome and they are modified 

by special genetic operators.  In the following,  0,1 r  is a 

random number (uniformly distributed), T ..., ,1  ,0=t is the 

generation number, 
v

s and 
w

s  are chromosomes selected 

for operation of the GA,  Nk ,...,2,1  is the position of an 

element in the chromosome, and min

k
v  and max

k
v  are the 

lower and upper bounds, respectively , on the parameter 

encoded by element k. For crossover operator, the 

chromosomes are selected in pairs ( )
wv

ss , . The Whole 

arithmetic crossover, is a linear combination, is usually 

used. For the mutation operator, all elements of a 

chromosome are mutated by a Gaussian mutation for 

example. Then, the crossover and the mutation operators 

can produce solutions that violate the bounds. After these 

operations, the constraints are forced. The length of a 

chromosome is n and 2n for distributed CA-CFAR and OS-

CFAR detectors respectively. The structure of each 

chromosome can be expressed as a vector of parameters 

shown as below. 
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The real-coded GA is given by the steps as follows:  

 

Step 1:  

Create the initial population of chromosomes where their 

values are obtained between the lower and upper bounds.  

Step 2: 

 Calculate initial fitness values using (8) or (9).  

Step 3: 

Repeat genetic optimisation for t=0, 1, 2… max iteration 

- Select a pair of chromosomes and use a crossover 

operator. 

- Use mutation operator of the resulting 

chromosomes by the crossover operator. 

- Operate on chromosomes acknowledging the 

search space constraints. 

- Create new population by substituting the 

operated chromosomes for those selected for 

deletion.   

Step 4: 

Select the best solution from a final population by 

evaluating the best fitness function.   

 

B. Biogeography based optimization method 

The BBO algorithm is a new kind of optimization 

technique based on biogeography concept. It is an 

evolutionary algorithm that optimizes a function by 

stochastically and iteratively improving candidate solutions 

with regard to a given measure of quality, or fitness 

function. This population based algorithm uses the idea of 

the migration strategy of animals or other species for 

solving optimization problems. This method belongs to the 

class of meta-heuristics since it includes many variations, 

and since it does not make any assumptions about the 

problem and can therefore be applied to a wide class of 

problems [9-12]. 

The structure of habitat for OS-CFAR can be expressed as 

a vector.  
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=
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nnnCFAROS
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22121
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The environment of BBO corresponds to an 

archipelago where every possible solution to the 

optimization problem is an island, each solution feature is 

called a suitability index variable (SIV). The goodness of 

each solution is called its habitat suitability index (HSI) 

where a high HSI of an island means good performance on 

the optimization problem and a low HSI means bad 

performance on the optimization problem. Improving the 

population is the way to solve problems in heuristic 

algorithms. The method to generate the next generation in 

BBO is by immigrating solution features to other islands 

and receiving solution features by emigration from other 

islands. The mutation is performed for the whole 

population in a manner similar to the mutation in GA.  

In the BBO algorithm, Fig. 2 illustrates migration 

models, the immigration rate λ and the emigration rate μ of 

a solution which are functions of its fitness. The 

immigration curve shows that the least fit solution has the 

largest immigration rate and smallest emigration rate. The 

most fit solution has the smallest immigration rate and the 

largest emigration rate. 1S represents a poor solution 

while 2S  represents a good solution. The process of the 

BBO involves the following steps [11, 12]: 

 

Step 1: Initialize the BBO parameters: maximum species 

count  
max

S  , the maximum migration rates E and I, the 

maximum rate  
max

m  , an elitism parameters and number of 

iterations. 
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Step 2: Initialize a random set of habitats, each habitat 

corresponding to a potential solution to the given problems. 

 

 

 

Fig. 3. Illustration of two BBO individuals using linear migration curves 
where S1 represents a poor solution and S2 represents a good solution 

 

Step 3: For each habitat, map the habitat suitability index to 

the number of species S, the immigration rate λ  and the 

emigration rate, μ . 

 

Step 4: Probabilistically use immigration and emigration to 

modify each non_elite habitat, then recompute each HSI. 

 

Step 5: For each habitat, update the probability of its 

species count, then mutate each probability and recomputed 

each HSI. 

 

Step 6: Is acceptable solution found? If yes then go to step 

8. 

 

Step 7: Number of iteration over? If no then go to Step 3 

for the next iteration. 

 

Step 8: Stop. 

The BBO has the ability to search for total optimal results without 

fixing any parameters as classical methods. 
 

IV. DISTRIBUTED CFAR DETECTION COMPARISONS 

In this section, we will employ the GA and BBO 

algorithms presented in the previous section for the 

optimization of local thresholds of distributed CA-CFAR 

and OS-CFAR detectors. First, the search interval is set to 

]100 ,0[
i

t and the ranked order is fixed in the 

interval ],1[
ii

N K  . The initial population of about 30 

random islands is generated for the BBO method and 

equations (13) and (14) are used as the objective measure 

functions (fitness functions) in the sense of the Neyman-

Pearson criterion. After giving the desired value of 

0
=

f
P , the weighting parameters in (13) and (14) are 

fixed in all simulations to 1
1
=w , 

02
/1 =w and 1

3
=w  in all 

simulations. Two cases of distributed CFAR detection are 

assessed in this section; distributed CA-CFAR and OS-

CFAR detectors with known power and distributed OS-

CFAR detectors with unknown power. 

 

A. Distributed CFAR detection with known power 

In this situation, we start by using the BBO method for 

the optimization of single, two and three identical CA-

CFAR and OS-CFAR detectors given in equations (7) and 

(9) with the “OR” fusion rule, Ni=32 (i.e., N1=N2=N3=32) 

and Si=20 (S1=S2=S3=20). As ploted in Figs. 4 and 5, the 

increase of the number of sensors provides better detection 

performances. When the desired value of Pf is used as a 

parameter, Pd values versus S (SNR) are depicted for the 

case of non-identical CA-CAR sensors using GA method 

and “AND” fusion rule. Moreover, Figures. 6. a and 6. b 

show that the best detection performances are achieved for 

high values of Pf.  Taking the same conditions as before, 

the BBO is executed and high values of Pd results are 

obtained for large values of Pf as illustrated in Figs. 7. a 

and 7. b. Now, we apply the two optimization tools (i.e., 

GA and BBO methods) to the distributed OS-CFAR 

detectors with “OR” fusion and Ni=32 (see Figs. 8 and 9).  

In terms of the optimization method, similar Pd results are 

given and the Pd values will be better if Pf takes high level. 

Fig. 10. b depicts the detection performances of non-

identical CA-CFAR detectors using GA tool and “OR” 

fusion rule. It is noticed that the finale fitness function has 

a full dependent on the desired value of Pf.  Also, the 

fitness function evolution versus the number of iterations is 

illustrated in Fig. 10.a. As expected, the maximization of 

the Pd is related to the desired values of Pf.  

To compare optimized values of local thresholds, ti we 

consider identical CA-CFAR with Ni=40 and Si=20. These 

variables which have similar values are optimized by the 

GA and the BBO tools.  It is observed in TABLE I that the 

GA and the BBO tools give the same detection results, 

because we have only one variable to be optimized i.e., ti. 

Our second experiment is the determination of unknown 

thresholds by means of GA and BBO methods when non 

identical sensors with N1=16, N2=24 and N3=32 are used. 

Compared to the GA results in the case of “AND” fusion 

rule, the BBO algorithm provides the best Pd values as 

shown in TABLE II. If the “OR” fusion rule is used, the 

BBO and the GA tools give almost the equivalent Pd values 

with slight superiority to BBO algorithm as shown in 

TABLE III.  
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Fig. 4. Detection probability of identical CA-CFAR detectors using BBO 

method for “OR” rule, Pf=1e-6, Ni=32 and Ki=3Ni/4. 
 

 

 

Fitness 

Emigration   

Probability 

Immigration  

1 

S1 S2 

International Journal of Information Science & Technology – iJIST, ISSN :  2550-5114
                                                                                                                Vol.3 No.3, 2019

http://innove.org/ijist/ 24 



 

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S, dB

P
d

 

 

n=1

n=2

n=3

 
Fig. 5. Detection probability of identical OS-CFAR detectors using BBO 

method for “OR” rule, Pf=1e-6, Ni=32 and Ki=3Ni/4. 
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(b) 

Fig. 6. Detection performances of non identical CA-CFAR detectors using 

GA method for N1=16, N2=24, N3=32 and “AND” fusion rule. 

(a) Fitness function versus the number of generations. 
(b) Pd versus S (SNR). 
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(b) 

 

Fig. 7. Detection performances of non identical CA-CFAR detectors using 

BBO method for N1=16, N2=24, N3=32 and “AND” fusion rule 
(a) Fitness function versus the number of generations. 

(b) Pd versus S (SNR). 
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(b) 

Fig. 8. Detection performances of identical OS-CFAR detectors using GA 

method for Ni=32 and “OR” fusion rule 
(a) Fitness function versus the number of generations 

(b) Pd versus S 

 

0 200 400 600 800 1000
10

-2

10
-1

10
0

10
1

BBO iterations

F
it
n
e
s
s
 f

u
n
c
ti
o
n

 

 

Pf=1e-4

Pf=1e-6

Pf=1e-8

 
(a) 

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S, dB

P
d

 

 

Pf=1e-4

Pf=1e-6

Pf=1e-8

 
(b) 

Fig. 9. Detection performances of identical OS-CFAR detectors using 

BBO method for Ni=32 and “OR” fusion rule 

(a) Fitness function versus the number of generations 
(b) Pd versus S 
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Fig. 10. Detection performances of distributed CA-CFAR using GA 

algorithm for N1=16, N2=24, N3=32 and “OR” fusion rule 
(a) Fitness function with Si=20. 

(b) Pd versus S (SNR). 
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TABLE I 

 

BEST THRESHOLDS FOR IDENTICAL CA-CFAR DETECTORS USING GA AND BBO ALGORITHMS WITH N=40, S=20 AND “OR” FUSION RULE 

Optimization tool Pf n=2 n=3 n=5 n=7 

 

 
 

GA  method [6] 

10-4 ti=0.2809 

Pd=0.8300 

ti= 0.2940 

Pd= 0.9224 

ti= 0.3106 

Pd=0.9827 

ti= 0.3217 

Pd=0.9959 

10-6 ti =0.4372 

Pd=0.6848 

ti = 0.4519 

Pd=0.8116 

ti= 0.4705 

Pd=0.9298 

ti= 0.4830 

Pd=0.9729 

10-8 ti= 0.6126 

Pd=0.5329 

ti = 0.6290 

Pd=0.6673 

ti = 0.6500 

Pd=0.8264 

ti = 0.6639 

Pd=0.6072 

 

 

BBO method 

10-4 ti =0.2809 

Pd=0.8300 

ti = 0.2940 

Pd= 0.9224 

ti = 0.3106 

Pd=0.9827 

ti = 0.3217 

Pd=0.9959 

10-6 ti =0.4372 

Pd=0.6848 

ti = 0.4519 

Pd=0.8116 

ti = 0.4705 

Pd=0.9298 

ti = 0.4830 

Pd=0.9729 

10-8 ti = 0.6126 

Pd=0.5329 

ti = 0.6290 

Pd=0.6673 

ti = 0.6500 

Pd=0.8264 

ti = 0.6639 

Pd=0.6072 
 

TABLE  II 

 OPTIMAL THRESHOLDS FOR NON IDENTICAL CA-CFAR DETECTORS USING GA AND BBO ALGORITHMS  

WITH N1=16, N2=24, N3=32, S=20 AND “AND” FUSION RULE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
TABLE  III 

 OPTIMAL THRESHOLDS OF NON IDENTICAL CA-CFAR DETECTORS USING GA AND BBO ALGORITHMS  

FOR N1=16, N2=24, N3=32, S=20 AND “OR” FUSION RULE 

 

Optimization 

Tool 

Pf t1 t2 t3 

 

 
 

GA method 

[6] 

 

10-4 

0.1531 0.1150 0.1445 

Pd=0.6271 

10-5 0.0988      0.5049   0.0062 

Pd=0.5196 

10-6 0.1770 0.2150 0.2266 

Pd=0.4857 

10-7 0.5362      0.1999     0.1646 

Pd=0.4145 

10-8 0.3045  0.3804     0.2226 

  Pd=0.3684 

 

 

BBO method 

10-4 0.1289 0.1255     0.1486 

Pd=0.6272 

10-5 0.1566      0.0991     0.2413 

Pd=0.5502 

 

10-6 

0.2065     0.2150     0.2115 

Pd=0.4860 

10-7  0.4086     0.3477         0.1147 

Pd= 0.4161 

10-8 0.2830     0.2497     0.3282 

Pd=0.3700 

Optimization 

Tool 

Pf t1 t2 t3 

 

 
 

GA method 

[6] 

 

10-4 

0.9114 0.5405 0.3754 

Pd=0.9025 

10-5  1.2059    0.6664     0.5055 

Pd=0.8339 

10-6 1.5352 0.8599 0.5964 

Pd=0.7524 

10-7  1.9749      1.0673     0.6949 

Pd= 0.6566 
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B.Distributed CFAR Detection with unknown power 

In the case of dependent signals with unknown 

power, we compare the detection performance of 

distributed OS-CFAR detectors using GA and BBO 

methods. In this study, two sensors are considered with 

different values of sample sizes, N1=6 and N2=20. 

Optimal parameters are found in TABLES IV and V for 

“AND” and “OR” fusion rules respectively. A closed 

look at these tables turns out that the BBO method 

provides the best Pd values in almost cases.  

By investigating the illustrated results, it is 

observed that the efficiency of the BBO algorithm will 

be useful when the optimization complexity of the 

distributed non identical CFAR detection for several 

parameters increases. 

 

TABLE  IV  

 CFAR DETECTION COMPARISONS BETWEEN THE GA AND BBO 

ALGORITHMS IN THE CASE NON IDENTICAL OS-CFAR DETECTORS 

WITH UNKNOWN POWER, N1=16, N2=20 AND “AND” FUSION RULE 

 

Pf BBO method GA method [6] 

10-1 T1=0.8204, T2=0.6457 

K1=12, K2=18 

)0("2

d
P = 0.4390 

T1=0.726, T2 =1.129 

K1=13, K2=14 

)0("2

d
P = 0.4389 

10-3 T1=2.6286, T2=2.1864 

K1=12, K2=18 

)0("2

d
P = 1.21e-2 

T1=1.556, T2 =3.281 

K1=15, K2=15 

)0("2

d
P = 1.205e-2 

 

10-4 

T1=3.6178, T2=3.0954 

K1=12, K2=18 

)0("2

d
P =1.500e-3 

T1= 3.156, T2=3.539 

K1=13, K2=17 

)0("2

d
P =1.552e-3 

 

10-5 

T1= 4.6611, T2=4.1103 

K1=12, K2=18 

)0("2

d
P =1.860e-4 

T1= 2.878, T2=5.162 

K1=15, K2=16 

)0("2

d
P =1.863e-4 

 

10-6 

T1= 5.7803, T2=5.2269 

K1=12, K2=18 

)0("2

d
P =2.1506e-5 

T1= 5.937, T2=6.073 

K1=12, K2=17 

)0("2

d
P =2.148e-5 

 

 

 

 

TABLE V 

 OPTIMIZATION BY GA AND BBO ALGORITHMS OF NON IDENTICAL 

OS-CFAR DETECTORS WITH UNKNOWN POWER, N1=16, N2=20 AND 

“OR” RULE 

Pf BBO method GA method [5] 

 

10-3 

T1= 6.1382, T1= 6.9298 

K1=13, K2=18 

)0("2

d
P = 2.53e-2 

T1= 7.272, T2=4.655 

K1=13, K2=18 

)0("2

d
P =1.162e-2 

 

 

10-4 

T1=5.9420, T2=7.6778 

K1=15, K2=18 

)0("2

d
P =2.900e-3 

T1= 5.3610, T2=7.703 

K1=16, K2=17 

)0("2

d
P =1.418e-3 

 

 

10-5 

T1= 8.2147, T2=10.6284 

K1=15, K2=18 

)0("2

d
P =3.3683e-4 

T1=9.7140,T2=8.6910 

K1=15, K2=18 

)0("2

d
P =1.662e-4 

 

10-6 

T1= 10.895,T2=14.0889 

K1=15, K2=18 

)0("2

d
P =3.7978e-5 

T1= 10.12, T2=9.179 

K1=16, K2=19 

)0("2

d
P =1.873e-5 

 

V. CONCLUSIONS 

 In this work, the optimization of distributed CFAR 

detection in Gaussian clutter was carried out using GA 

and BBO tools. Two CFAR procedures were considered; 

the CA-CFAR and the OS-CFAR. The detection 

performances were assessed as a function of the number 

of sensors, the desired value of the false alarm 

probability and the preselected “AND” or “OR” fusion 

rule at the fusion center.  The obtained results showed 

the improvements of the global detection probability 

using the BBO algorithm in almost cases rather than the 

GA algorithm.  

 

 

 

 

 

 

 

10-8 2.3957 1.2512 0.8407 

Pd=0.5584 

 

 

BBO method 

10-4 0.8762     0.5293     0.4018 

Pd=0.9018 

10-5 1.1964      0.6918     0.4838 

Pd= 0.8355 

 

10-6 

1.5268 0.8646 0.5962 

Pd=0.7524 

10-7 1.8740      1.0736     0.7205 

Pd=  0.6567 

10-8 2.3798     1.2541     0.8432 

Pd=0.5584 
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