Hybrid filtering and semantic sentiment analysis by deep learning for recommendation systems
Abstract
Faced with the ever-increasing complexity, volume and dynamism of online information, recommendation systems are among the solutions that anticipate the needs of users and offer them items (articles, products, web pages, etc.) that they are likely to appreciate. Unlike traditional recommendation models, deep learning offers a better understanding of user requests, characteristics of objects, historical interactions between them and it can process massive amounts of data. In this work we realize a recommendation system based on MLP deep learning adapted to data already defined by their characteristics. In addition to the use of deep learning, we offer a new hybrid recommendation system solution between the demographic approach and the content-based approach in order to eliminate the limits of each and to combine their strengths, through a deep neural network that harnesses the mass of data. "Experimentation with our approach has produced good results in terms of accuracy and speed, whether through the use of deep learning or the hybridization of content-based and demographic filtering, which is a particular case of collaborative filtering.The submitting author warrants that the submission is original and that she/he is the author of the submission together with the named co-authors; to the extend the submission incorporates text passages, figures, data or other material from the work of others, the submitting author has obtained any necessary permission.
Articles in this journal are published under the Creative Commons Attribution Licence (CC-BY). This is to get more legal certainty about what readers can do with published articles, and thus a wider dissemination and archiving, which in turn makes publishing with this journal more valuable for you, the authors.
In order for iJIST to publish and disseminate research articles, we need publishing rights. This is determined by a publishing agreement between the author and iJIST.
By submitting an article the author grants to this journal the non-exclusive right to publish it. The author retains the copyright and the publishing rights for his article without any restrictions.
Privacy Statement
The names and email addresses entered in this journal site will be used exclusively for the stated purposes of this journal and will not be made available for any other purpose or to any other party.